DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE AND FOOD WASTE AND ALLEVIATION OF ACID INHIBITION BY ACTIVATED CARBON
-
摘要: 分别在中温和高温条件下对厨余垃圾与餐厨垃圾混合干式厌氧发酵产甲烷特性进行研究,结果表明:55℃高温发酵累积产气量均高于35℃中温组;高温组厨余垃圾与餐厨垃圾配比为1:5时发酵累积产气量最大,最大累积产气量达到2492.5 mL,是中温组协同产甲烷的1.4倍。同时,为提高产气率,考察了不同种类活性炭对厌氧发酵的影响,采用甘蔗皮、秸秆、花生藤蔓以及发酵沼渣为原料自制了4种生物质活性炭。实验结果表明,4种活性炭均呈蜂窝煤状的炭孔,其中甘蔗皮活性炭表面炭孔相对规则、完整,微生物可附着面积大,更有利于加快产气进程。添加甘蔗皮活性炭时累积产气3410 mL,相比空白对照组增长20.1%。Abstract: The dry anaerobic fermentation performance of kitchen waste and food waste to produce methane characteristics under mesophilic (35℃) and thermophilic (55℃) condition were studied respectively. The results showed that the cumulative gas production in the thermophilic fermentation were higher than that in 35℃ temperature groups. When the ratio of kitchen waste and food waste was 1:5 in the high temperature group, the cumulative gas production reached the highest level. The maximum cumulative gas production was 2492.5 mL, which was 1.4 times of the production of methane in the medium temperature group. In order to increase the yield of biogas, 4 kinds of activated carbon, such as sugarcane rind, straw, peanut vine and biogas residue, were prepared and the effects of different kinds of activated carbon on anaerobic fermentation were investigated. The experimental results showed that the 4 kinds of activated carbon had honeycomb shaped holes, especially the activated carbon produced from sugarcane rind had relatively higher regular and complete holes, which could provide larger area for microbes and improve the process of gas producing. When sugarcane rind activated carbon was added in the system, the cumulative gas production could reach 3410 mL, 20.1% higher than that of blank group.
-
Key words:
- kitchen waste /
- food waste /
- dry anaerobic fermentation /
- methane /
- biomass activated carbon
-
郭香麟,左剑恶,史绪川,等.餐厨垃圾与秸秆混合中温和高温厌氧消化对比[J].环境科学, 2017,38(7):3070-3077. 刘会友,王俊辉,赵定国.国内外餐厨垃圾现状及其处理措施[J].新能源进展,2017,5(4):266-271. 王攀,邱银权,任连海,等.不同储存条件下餐厨垃圾的变化特征及其厌氧消化产气潜力[J].环境工程,2017, 35(8):108-111. 王攀,李冰心,黄燕冰,等.含盐量对餐厨垃圾干式厌氧发酵的影响[J].环境污染与防治,2015,37(5):27-31. ALESSANDRO C, DA BORSO F,LIMINA S.Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant Efficiency and comparison with wet fermentation[J].Waste Management,2018,71:704-719. WANG P, WANG H T, QIU Y Q, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production:a review[J].Bioresource Technology,2018,248:29-36. LV F, LUO C H, SHAO L M, et al.Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[J].Water Research,2016,90:34-43. ZHAO Z Q,ZHANG Y B,WOODARD T L,et al.Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology,2015,191:140-145. 张露思,郭婉茜,丁杰,等.活性炭载体对颗粒污泥形成及产氢的影响[J].哈尔滨工程大学学报,2010,31(11):1544-1548. 郑秋生,李龙,胡雪玉.农作物秸秆用于制备活性炭的研究进展[J].纤维素科学与技术,2010,18(3):69-71. 吴春,高彦杰,刘宁.玉米芯吸附处理工业废水中染料的方法研究[J].食品科学,2007,28(11):60-61. 崔家荣.水中氨氮纳氏试剂分光光度法测定[J].现代农业科技,2008(8):208-209. CHEN W H,CHEN S Y,KHANAL S K,et al.Kinetic study of biological hydrogen production by anaerobic fermentation[J].International Journal of Hydrogen Energy,2006,31(15):2170-2178. 王金辉.餐厨垃圾固相物料干式厌氧消化处理研究[D].宁波:宁波大学,2017. 石利军,班立桐,刘惠芬,等.温度对畜禽粪便稻草混合干式厌氧发酵的影响[J].农业环境科学学报,2011,30(4):782-786. 张希衡.废水的厌氧生物处理[M].北京:中国环境科学出版社,1995. 付胜涛,于水利,严晓菊,等.剩余活性污泥和餐厨垃圾的混合中温厌氧发酵[J].环境科学,2006,27(7):1459-1460. 李勇,顾广发,刘松华,等.餐厨垃圾与污泥共发酵脱氮技术的研究[J].可再生能源,2011,29(6):98-99. 曹先艳,赵由才,袁玉玉,等.氨氮对餐厨垃圾厌氧发酵产氢的影响[J].太阳能学报,2008,29(6):751-755. 李浩.温度及有机负荷对餐厨垃圾与剩余污泥共发酵特性的影响研究[D].西安:西安建筑科技大学,2017. 蒋建国,王岩,隋继超,等.厨余垃圾高固体厌氧消化处理中氨氮浓度变化及其影响[J].中国环境科学,2007,27(6):721-726. GONG W J,LIANG H,LI W Z,et al.Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure[J].Energy,2011,36(5):3572-3578. 王永泽,邵明胜,杨立,等.不同吸附剂对棉花秸秆沼气发酵效率的影响研究[J].现代农业科技,2008(23):178-179. 蒋凯凤,肖继波.水处理生物膜载体研究进展[J].浙江林学院学报,2010,27(3):451-455.
点击查看大图
计量
- 文章访问数: 323
- HTML全文浏览量: 49
- PDF下载量: 9
- 被引次数: 0