REMOVAL OF LEAD(Pb2+)FROM SOIL WITH MICROBIAL FUEL CELLS TECHNOLOGY
-
摘要: 为探讨微生物燃料电池对土壤中重金属的去除效能,测定双室MFCs的产电性能。实验以盐桥作为质子通道,构建并利用双室微生物燃料电池(MFCs)对土壤中铅(Pb2+)进行去除,铅(Pb2+)的测定采用火焰原子吸收分光光度法;电极板上铅(Pb)的富集采用扫描电镜观察和能谱方法分析;阳极液中分离的细菌的系统分类学位置通过分离、纯化和16S rDNA测序以及创建系统树来解析。实验表明:MFCs运行10 d后,土壤中铅(Pb)的去除率高达64.40%,最大电压值为69.63 mV;从阳极液中分离出的细菌的系统分类学位置分析表明,2株细菌分别与Stenotrophomonas maltophilia strain LH15(KM893074)和Pseudomonas sp.putida strain(MF996382)同源性最高,且均为100%,两菌株分别为嗜麦芽窄食单胞菌和为恶臭假单胞菌,并分别命名为SKD-GYT-1(LC479453)和SKD-GYT-2(LC479454),对其产电能力的分析仍有待探索。研究表明,土壤微生物燃料电池的产电能力较高,对于土壤中铅的去除效果明显。
-
关键词:
- 双室微生物燃料电池(MFCs) /
- 土壤 /
- 铅(Pb2+) /
- 扫描电镜 /
- 能谱分析
Abstract: In order to investigate the removal capability of heavy metals from soil by microbial fuel cells, we measure the electrical performance of a double-chamber microbial fuel cell (MFCs), and salt bridge was used as the proton channel in MFCs. The concentration of lead(Pb2+) was determined by flame atomic absorption spectrophotometry. The enrichment of Pb on electrode plate was observed by scanning electron microscope and analyzed by energy dispersive spectroscopy. The systematic taxonomic position of the bacteria isolated from the anolyte was analyzed by isolation, purification, 16S rDNA sequencing, and the establishment of the system tree. The results showed that after 10 days of MFCs operation, the removal of lead (Pb2+) from soil was as high as 64.40%, and the maximum voltage was 69.63 mV. The systematic taxonomic position analysis of the bacteria isolated from the anolyte showed that the two bacteria had the highest homology of 100% with Stenotrophomonas maltophilia strain LH15 (KM893074) and Pseudomonas sp. putida strain (MF996382) respectively. Based on the above results, the two strains were defined into Stentrophomonas and Pseudomonas by genus, and named SKD-GYT-1 (LC479453) and SKD-GYT-2 (LC479454) respectively, and their power generation capacity remained to be explored. Soil microbial fuel cells have a high capacity of generating electricity and obvious effect on the removal of lead from soil.-
Key words:
- double-chamber microbial fuel cells (MFCs) /
- soil /
- lead (Pb2+) /
- SEM /
- EDS
-
PENG G Q, TIAN G M. Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge[J]. Chemical Engineering Journal, 2010, 165(2):388-394. 林芳芳, 丛鑫, 马福俊, 等. 处理温度和时间对六氯苯污染土壤热解吸修复的影响[J]. 环境科学研究, 2014, 27(10):1180-1185. LIAO X Y, LI Y, YAN X L. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process[J]. Journal of Environmental Sciences, 2016, 41:202-210. 李欣芮, 成杰民. 原位钝化修复技术在重金属污染土壤中的可行性探究[J]. 绿色科技, 2017(20):87-89. GUSTAVE W, YUAN Z F, SEKAR R, et al. Arsenic mitigation in paddy soils by using microbial fuel cells[J]. Environmental Pollution, 2018, 238:647-655. CHEN Z, ZHU B K, JIA W F, et al. Can electrokinetic removal of metals from contaminated paddy soils be powered by microbial fuel cells?[J]. Environmental Technology & Innovation, 2015, 3:63-67. 唐静文. 土壤微生物燃料电池产电性能及其修复Cd污染土壤效果的研究[D]. 上海:华东理工大学,2018. 姜振. 植物-微生物电化学复合系统修复铬污染土壤和同步产电[D]. 哈尔滨:哈尔滨工业大学, 2016. HUANG L P, CHEN J W, QUAN X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8):937-945. AFASHAM N, ROSHANDEL R, YAHJMAEI A S, et al. Bioelectricity generation in a soil microbial fuel cell with biocathode denitrification[J]. Energy Sources, 2015, 37(19):2092-2098. CHAO X, SONG H L, YU C Y, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell[J]. Bioresource Technology, 2015, 189:87-93. HABIBUL N, HU Y, SHENG G P. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils[J]. Journal of Hazard Materials, 2016, 318:9-14. YUAN Y, ZHOU S, ZHUANG L. A new approach to in situ sediment remediation based on air-cathode microbial fuel cells[J]. Journal of Soils & Sediments, 2010, 10(7):1427-1433. LOVLEY D R, NEVIN K P. A shift in the current:new applications and concepts for microbe-electrode electron exchange[J]. Current Opinion in Biotechnology, 2011, 22(3):441-448. LOGAN B E, REGAN J M. Microbial fuel cells-challenges and applications[J]. Environment Science Technology, 2006, 40(17):5172-5180. 黄敏, 汪家权, 朱承驻. 微生物燃料电池中盐桥连接的探讨[J]. 合肥工业大学学报(自然科学版), 2008, 31(10):1574-1576. 朱贤妃. 两种简易盐桥的制备[J]. 实验教学与仪器, 2009, 2:66. 景丽洁, 马甲. 火焰原子吸收分光光度法测定污染土壤中5种重金属[J]. 中国土壤与肥料, 2009(1):74-77. 蒯梦霞. 微生物燃料电池对土壤重金属的去除效能研究[D]. 南京:东南大学, 2016. 费讲驰. 高效产电菌的筛选及其在微生物燃料电池中的应用研究[D]. 吉首:吉首大学, 2014.
点击查看大图
计量
- 文章访问数: 184
- HTML全文浏览量: 33
- PDF下载量: 6
- 被引次数: 0