ISOLATION AND CHARACTERIZATION OF A STAIN OF MERCURY VOLATIZING FUNGUS
-
摘要: 近年来土壤汞污染日益严峻,严重危害环境和人类健康,已成为一个世界性的环境问题,因此选择合理有效的方法对其进行修复与控制刻不容缓。有些微生物对汞具有吸附和挥发的特性,可用于受汞污染环境的修复。实验从受重金属污染的土壤中分离纯化出1株高抗汞真菌(DC-F9),其汞的最小抑菌浓度(MIC)达到160 mg/L;通过ITS序列比较,鉴别该菌属于曲霉属真菌;摇瓶培养发现,该真菌在Hg(Ⅱ)浓度为5 mg/L的培养基中对汞的挥发率、吸附率和总去除率分别为36.8%、58.4%、95.2%;而在Hg(Ⅱ)浓度为10 mg/L的培养基中,其值分别为45.4%、40.2%、85.6%;通过FTIR分析,发现该菌株为响应汞的胁迫表现出多种生理上变化。结果表明该菌株具有对汞污染环境修复的应用潜力。Abstract: In recent years, soil contaminated with mercury (Hg) has become serious problem on earth, endangering the environment and human health. Therefore, it is urgent to develop a reasonable and effective method to remediate it. Some microorganisms have capacity of adsorption and volatilization for Hg(Ⅱ), and can be applied to the bioremediation of Hg-contaminated environments. In this study, a highly Hg-resistant fungus (DC-F9) was isolated from the heavy metal-contaminated soil with a minimum inhibitory concentration (MIC) of 160 mg/L. The strain belonged to the genus Aspergillus by the phylogenetic analysis of its ITS sequence. In the medium supplemented with Hg(Ⅱ) concentration of 5 mg/L, the volatilization rate, adsorption rate and total removal rate of Hg(Ⅱ) were 36.8%, 58.4%, 95.2% respectively; and they were 45.4%, 40.2%, 85.6% respectively at Hg(Ⅱ) concentration of 10 mg/L. The strain exhibited a variety of physiological changes in response to mercury stress by FTIR analyses. These results showed that the DC-F9 had potentials of bioremediation for Hg-contaminated environment.
-
Key words:
- Hg-contaminated soil /
- volatilization /
- fungi /
- adsorption
-
NASCIMENTO A M A, CHARTONE-SOUZA E. Operon mer:bacterial resistance to mercury and potential for bioremediation of contaminated environments[J]. Genetics and Molecular Research, 2003, 2(1):92-101. CHIEN M, NAKAHATA R, ONO T, et al. Mercury removal and recovery by immobilized Bacillus megaterium MB1[J]. Frontiers of Chemical Science and Engineering, 2012, 6(2):192-197. ZAHIR F, RIZWI S J, HAQ S K, et al. Low dose mercury toxicity and human health[J]. Environmental Toxicology and Pharmacology, 2005, 20(2):351-360. LI P, FENG X B, QIU G L, et al. Mercury pollution in Asia:a review of the contaminated sites[J]. Journal of Hazardous Materials, 2009, 168(2/3):591-601. MAHBUB K R, KRISHNAN K, MEGHARAJ M, et al. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil[J]. Chemosphere, 2016, 144:330-337. WAGNER-DOBLER I. Bioremediation of Mercury:Current Research and Industrial Applications[M]. Poole:Caister Academic Press, 2013:2-6. 王新, 周启星. 重金属与土壤微生物的相互作用及污染土壤修复[J]. 环境工程学报, 2004, 5(11), 1-5. 刘平, 仇广乐, 商立海. 汞污染土壤植物修复技术研究进展[J]. 生态学杂志, 2007, 26(6):933-937. VELÁSQUEZ-RIAÑO M, BENAVIDES-OTAYA H D. Bioremediation techniques applied to aqueous media contaminated with mercury[J]. Critical Reviews in Biotechnology, 2016, 36(6):1124-1130. 邹鲤岭, 杨加庆, 程先锋, 等. 云南土壤和白菜重金属东川小江沿岸农田污染研究[J]. 西南农业学报, 2018, 31(4):754-758. BLOOM N, FITZGERALD W F. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection[J]. Analytica Chimica Acta, 1988, 208(1/2):151-161. WU D, ZHANG Z P, GAO Q L, et al. Isolation and characterization of aerobic, culturable, arsenic-tolerant bacteria from lead-zinc mine tailing in southern China[J]. World Journal of Microbiology and Biotechnology, 2018, 34(12):177. 卢福芝, 李启虔, 何海燕, 等. 一株抗镉真菌的分离鉴定及特性研究[J]. 环境工程, 2016, 34(4):64-67. 姜雨萌, 牛永春, 邓晖. rDNA ITS序列在ACCC真菌鉴定中的应用[J]. 微生物学通报, 2016, 43(5):942-947. BELLEMAIN E, CARLSEN T, BROCHMANN C, et al. ITS as an environmental DNA barcode for fungi:an in silico approach reveals potential PCR biases[J]. BMC Microbiology, 2010, 10(1):189. FRANÇOIS F, LOMBARD C, GUIGNER J M, et al. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury[J]. Applied and Environmental Microbiology, 2012, 78(4):1097-1106. SENEVIRATNE M, GUNARATNE S, BANDARA T, et al. Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress[J]. South African Journal of Botany, 2016, 105:19-24. KURNIATI E, ARFARITA N, IMAI T, et al. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil[J]. Journal of Environmental Sciences, 2014, 26(6):1223-1231. ZAFAR S, AQIL F, AHMAD I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil[J]. Bioresource Technology, 2007, 98(13):2557-2561. 韩桂云, 齐玉臣, 刘忱, 等. 温度、pH对菌根真菌生长影响的研究[J]. 生态学杂志, 1993,12(1):15-19. 魏景超. 真菌鉴定手册[M]. 上海:上海科学技术出版社,1979:498-499. BARKAY T, MILLER S M, SUMMERS A O. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiology Reviews, 2003, 27(2/3):355-384. DASH H R, DAS S. Bioremediation of mercury and the importance of bacterial mer genes[J]. International Biodeterioration & Biodegradation, 2012, 75:207-213. JIMÉNEZ-MORENO M, PERROT V, EPOV V N, et al. Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg (Ⅱ) by methylcobalamin in aqueous chloride media[J]. Chemical Geology, 2013, 336:26-36. MARTÍNEZ-JUÁREZ V M, CÁRDENAS-GONZÁLEZ J F, TORRE-BOUSCOULET M E, et al. Biosorption of mercury (Ⅱ) from aqueous solutions onto fungal biomass[J]. Bioinorganic Chemistry and Applications, 2012:1-5. OYETIBO G O, ISHOLA S T, IKEDA-OHTSUBO W, et al. Mercury bioremoval by Yarrowia strains isolated from sediments of mercury-polluted estuarine water[J]. Applied Microbiology and Biotechnology, 2015, 99(8):3651-3657. OUST A, MØRETRØ T, KIRSCHNER C, et al. FT-IR spectroscopy for identification of closely related lactobacilli[J]. Journal of Microbiological Methods, 2004, 59(2):149-162. 黄晓婷, 马义丽, 李有志. 微紫青霉菌Penicillium janthinellum菌株GXCR吸附废水中Cd2+的研究[J]. 菌物学报, 2009, 28(6):850-856. MECOZZI M, PIETROLETTI M, DI MENTO R. Application of FTIR spectroscopy in ecotoxicological studies supported by multivariate analysis and 2D correlation spectroscopy[J]. Vibrational Spectroscopy, 2007, 44(2):228-235.
点击查看大图
计量
- 文章访问数: 384
- HTML全文浏览量: 87
- PDF下载量: 4
- 被引次数: 0