HYDROCHEMICAL CHARACTERISTICS AND POSSIBLE CONTROLS OF THE SURFACE WATER IN LAKE BAIYANGDIAN BASIN
-
摘要: 为探究半干旱区地表水化学特征及物质来源,以白洋淀流域为研究对象,利用Piper三线图和Gibbs水岩模型,对地表水的主要离子组成特征及其来源进行分析。结果表明:白洋淀流域地表水pH为7.56~8.23时,呈弱碱性,且溶解性总固体(TDS,100~650 mg/L)在流域的不同空间区域表现为淀区 > 下游 > 上游。白洋淀流域地表水阳离子以Na+和Ca2+为主,离子总量占比76.60%;阴离子以HCO3-为主,约占阴离子总量61.52%。地表水的水化学类型为HCO3-Ca型(上游水体)和HCO3·SO4·Cl-Na·Ca型(下游河流和淀区)。白洋淀水文地球化学过程受到人类活动和自然作用的双重控制;自然作用下,白洋淀流域地表水中的离子来源于岩石风化(碳酸盐岩及硅酸盐岩的风化溶解),同时受到蒸发-结晶作用影响。Abstract: To explore the characteristics and sources of surface water hydrochemistry in semi-arid areas, we analyzed the main ion composition characteristics and sources of surface water in Lake Baiyangdian basin, using hrochemical technics such as Piper Triangular diagrams and Gibbs water-rock model. The results showed that the pH of the surface water in the Lake Baiyangdian basin varied from 7.56 to 8.23, which was weakly alkaline. And the total dissolved solids, was 100 mg/L to 650 mg/L in different regions of the basin, ranking as Lake Baiyangdian > downstream > dpstream. The cations in the surface water of Lake Baiyangdian basin were mainly Na+ and Ca2+, which accounted for 76.60% of the total cations. And the anions were mainly HCO3-, which accounted for about 61.52% of total anions. The water chemistry types of surface water were HCO3-Ca in upstream, and HCO3·SO4·Cl-Na·Ca in downstream and Lake Baiyangdian. The hydrogeochemical process of Lake Baiyangdian basin was controlled by both human activities and natural functions. For natural sources, the ions of the surface water of the Lake Baiyangdian basin originated from rock weathering, carbonate weathering and silicate weathering mainly, which also affected by evaporation-crystallization.
-
Key words:
- semi-arid areas /
- Lake Baiyangdian basin /
- hydrochemical characteristic /
- human activity
-
李瑞,张飞,高宇潇,等. 艾比湖区域地表水水化学特征干湿季变化及其控制因素[J]. 冰川冻土,2016,38(5):1394-1403. ASARE-DONKOR N K, OFOSU J O, ADIMADO A A. Hydrochemical characteristics of surface water and ecological risk assessment of sediments from settlements within the Birim River basin in Ghana[J]. Environmental Systems Research, 2018, 7(1):9. 王锴. 红碱淖流域土地利用与土地覆被变化对地下水补给的影响[D]. 西安:长安大学, 2019. CATHERINE CHAGUÉ-GOFF, ALAN F M, KATHARINE J M. Hydrological processes and chemical characteristics of low-alpine patterned wetlands, south-central New Zealand[J]. Journal of Hydrology, 2010, 385(1):105-119. 姚鹏,卢国平.拒马河的水化学、同位素特征及其指示意义[J].环境化学, 2017, 36(7):1525-1536. FENTA N, MARC V C, ALEMU Y, et al. Recharge-discharge relations of groundwater in volcanic terrain of semi-humid tropical highlands of ethiopia:the case of Infranz Springs, in the Upper Blue Nile[J]. Water, 2020, 12(3):853. QUENET M, CELLE-JEANTON H, VOLDOIRE J O, et al. Coupling hydrodynamic, geochemical and isotopic approaches to evaluate oxbow connection degree to the main stream and to adjunct alluvial aquifer[J]. Journal of Hydrology, 2019, 577:123936. 张涛, 王明国, 张智印,等. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 41(9):4003-4010. 郭亚文, 田富强, 胡宏昌,等. 南小河沟流域地表水和地下水的稳定同位素和水化学特征及其指示意义[J]. 环境科学, 2020, 41(2):682-690. CABEZAS A, GARCIA M, GALLARDO B, et al. The effect of anthropogenic disturbance on the hydrochemical characteristics of riparian wetlands at the Middle Ebro River (NE Spain)[J]. Hydrobiologia, 2009, 617:101-116. 孔晓乐, 王仕琴, 丁飞,等. 基于水化学和稳定同位素的白洋淀流域地表水和地下水硝酸盐来源[J]. 环境科学, 2018, 39(6):2624-2631. 王为东. 芦苇型水陆交错带中根孔结构及其影响下的水化学研究[D]. 北京:中国科学院研究生院(生态环境研究中心), 2002. 陈毅. 白洋淀流域平原区地下水-孔隙水的水化学特征和水文地球化学过程[D]. 北京:中国地质大学, 2018. 刘园园. 白洋淀湿地生态系统的演变分析及健康评价[D]. 保定:河北农业大学, 2019. 温静,黄大庄.白洋淀流域景观结构和格局时空变化规律及其与地形因子关系[J].河北农业大学学报,2020,43(3):86-95. 魏兴, 周金龙, 乃尉华,等. 新疆喀什三角洲地下水化学特征及演化规律[J]. 环境科学, 2019, 40(9):4042-4051. Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170:1088-1090. 袁悦. 半干旱区内陆湖流域水化学特征研究[D]. 西安:长安大学, 2019. 管春兴. 玛纳斯河流域地表水-地下水转化的水化学及同位素证据[D]. 西安:长安大学, 2019. 郭苗, 张飞, 张海威,等.艾比湖流域地表水水化学特征及空间变异特征分析[J]. 环境工程, 2017, 35(7):146-151. LI Z J, YANG Q C, YANG Y S, et al. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J]. Journal of Hydrology, 2019, 576:685-697. 陈新永, 田在锋, 胡晓波,等. 网箱养殖对白洋淀草型湖泊水质的影响[J]. 水生态学杂志, 2011, 32(1):61-65. 李再兴, 孙悦, 张艺冉,等. 白洋淀冰封期沉积物中氮赋存形态及分布特征[J]. 环境工程, 2019, 37(12):29-33. 石锦丽, 王博欣, 王靖. 河北省河湖生态水量保障的实践与思索[J]. 水利发展研究, 2019, 19(1):40-42. 张雪梅. 河北省引黄补淀输水管理工作回顾[J]. 河北水利, 2015(5):36-37. 期刊类型引用(20)
1. 韩玉,郑忠陆,陈贤伟,李霞,郭雨昂,公维洁. 三亚河营养盐时空分布及富营养化研究. 环境化学. 2024(02): 524-535 . 百度学术
2. 张艳军. 秦皇岛市主要入海河流污染物浓度及入海通量分析. 中国资源综合利用. 2024(03): 153-155 . 百度学术
3. 顾永钢,于磊,张书函,孟庆义. 农村典型河道劣Ⅴ类水体治理熵增抑制效果评估. 环境工程. 2024(02): 128-134 . 本站查看
4. 谭杰,樊娟,肖金,李紫嫣,周国治,龙睿. 湘江流域(湖南段)水质时空分布特征及污染源解析. 四川环境. 2024(03): 29-35 . 百度学术
5. 毛德华,周滢,周懿琳. 1990~2016年湘江流域水质时空变化及驱动因素分析. 环境科学. 2024(07): 3953-3964 . 百度学术
6. 赵宏烨,杜银龙,廖胜利,李灵慧,杨力鹏,史晓珑. 黄河呼和浩特段水环境质量时空变化分析. 中国环境监测. 2023(01): 117-127 . 百度学术
7. 吴佳玲,毛德华. 湘江流域水体重金属污染及健康风险评价. 人民珠江. 2023(03): 94-103 . 百度学术
8. 欧玉婵,申健,陈锐明,李盟军,李冬娴,林挺锐,王荣辉,王思源,艾绍英. 广东淡水河下游流域水质时空变化特征. 广东农业科学. 2023(03): 69-77 . 百度学术
9. 曹艳敏,安宏雷,韩帅. 湘江流域水环境评价模型及驱动因子识别. 长江科学院院报. 2023(10): 51-58 . 百度学术
10. 张名豪,范围,刘建辉,敖亮. 成渝双城经济圈流域污染源解析与水质贡献研究. 环境生态学. 2023(10): 22-28+36 . 百度学术
11. 张富康,冯民权. 基于熵权综合污染指数法的汾河中游水质分析. 人民黄河. 2022(05): 109-114+120 . 百度学术
12. 袁宇,谭璐,舒倩,陈丹丹,杨海君. 集中式饮用水源地水环境质量变化及健康风险评估——以湘潭市某水厂为例. 环境保护科学. 2022(03): 132-139 . 百度学术
13. 徐大建,张建国,王佩,秦溱,熊钢,王晓清. 湘江浮游植物的生态特征及其与环境因子的相关性. 湖南农业大学学报(自然科学版). 2022(05): 594-600 . 百度学术
14. 吴岳玲,李世龙,邱小琮,杨永宇,雷兴碧. 清水河流域水质综合分析与评价. 环境监测管理与技术. 2021(02): 40-45 . 百度学术
15. 李尧,刘建卫,秦国帅,田晶. 浑太流域水质演变特征及污染源解析. 中国农村水利水电. 2021(08): 14-17+22 . 百度学术
16. 万自学,杨海君,张正云,周耀明. 长沙市某集中式饮用水水源地周边土壤重金属污染特征和风险评价. 中国环境监测. 2021(04): 118-127 . 百度学术
17. 陶亚,程亮,赵喜亮,王梓赫. 基于控制单元的流域水环境问题诊断方法研究. 华北水利水电大学学报(自然科学版). 2020(02): 12-17 . 百度学术
18. 黄华. 基于模糊综合分析法对县城水质的综合评价研究. 环境科学与管理. 2020(05): 173-178 . 百度学术
19. 李林芝,陈浒,王存璐,陈静,张红梅,杨乙未,郭城. 贵州疣螈栖息地水质评价. 生态学杂志. 2020(08): 2636-2645 . 百度学术
20. 李苗,严思睿,刘强,张军龙,袁晓敏. 白洋淀流域径流过程对极端气象干旱的响应分析. 环境工程. 2020(10): 14-20 . 本站查看
其他类型引用(18)
-

计量
- 文章访问数: 586
- HTML全文浏览量: 152
- PDF下载量: 73
- 被引次数: 38