HYDROCHEMICAL CHARACTERISTICS AND POSSIBLE CONTROLS OF THE SURFACE WATER IN LAKE BAIYANGDIAN BASIN
-
摘要: 为探究半干旱区地表水化学特征及物质来源,以白洋淀流域为研究对象,利用Piper三线图和Gibbs水岩模型,对地表水的主要离子组成特征及其来源进行分析。结果表明:白洋淀流域地表水pH为7.56~8.23时,呈弱碱性,且溶解性总固体(TDS,100~650 mg/L)在流域的不同空间区域表现为淀区 > 下游 > 上游。白洋淀流域地表水阳离子以Na+和Ca2+为主,离子总量占比76.60%;阴离子以HCO3-为主,约占阴离子总量61.52%。地表水的水化学类型为HCO3-Ca型(上游水体)和HCO3·SO4·Cl-Na·Ca型(下游河流和淀区)。白洋淀水文地球化学过程受到人类活动和自然作用的双重控制;自然作用下,白洋淀流域地表水中的离子来源于岩石风化(碳酸盐岩及硅酸盐岩的风化溶解),同时受到蒸发-结晶作用影响。Abstract: To explore the characteristics and sources of surface water hydrochemistry in semi-arid areas, we analyzed the main ion composition characteristics and sources of surface water in Lake Baiyangdian basin, using hrochemical technics such as Piper Triangular diagrams and Gibbs water-rock model. The results showed that the pH of the surface water in the Lake Baiyangdian basin varied from 7.56 to 8.23, which was weakly alkaline. And the total dissolved solids, was 100 mg/L to 650 mg/L in different regions of the basin, ranking as Lake Baiyangdian > downstream > dpstream. The cations in the surface water of Lake Baiyangdian basin were mainly Na+ and Ca2+, which accounted for 76.60% of the total cations. And the anions were mainly HCO3-, which accounted for about 61.52% of total anions. The water chemistry types of surface water were HCO3-Ca in upstream, and HCO3·SO4·Cl-Na·Ca in downstream and Lake Baiyangdian. The hydrogeochemical process of Lake Baiyangdian basin was controlled by both human activities and natural functions. For natural sources, the ions of the surface water of the Lake Baiyangdian basin originated from rock weathering, carbonate weathering and silicate weathering mainly, which also affected by evaporation-crystallization.
-
Key words:
- semi-arid areas /
- Lake Baiyangdian basin /
- hydrochemical characteristic /
- human activity
-
李瑞,张飞,高宇潇,等. 艾比湖区域地表水水化学特征干湿季变化及其控制因素[J]. 冰川冻土,2016,38(5):1394-1403. ASARE-DONKOR N K, OFOSU J O, ADIMADO A A. Hydrochemical characteristics of surface water and ecological risk assessment of sediments from settlements within the Birim River basin in Ghana[J]. Environmental Systems Research, 2018, 7(1):9. 王锴. 红碱淖流域土地利用与土地覆被变化对地下水补给的影响[D]. 西安:长安大学, 2019. CATHERINE CHAGUÉ-GOFF, ALAN F M, KATHARINE J M. Hydrological processes and chemical characteristics of low-alpine patterned wetlands, south-central New Zealand[J]. Journal of Hydrology, 2010, 385(1):105-119. 姚鹏,卢国平.拒马河的水化学、同位素特征及其指示意义[J].环境化学, 2017, 36(7):1525-1536. FENTA N, MARC V C, ALEMU Y, et al. Recharge-discharge relations of groundwater in volcanic terrain of semi-humid tropical highlands of ethiopia:the case of Infranz Springs, in the Upper Blue Nile[J]. Water, 2020, 12(3):853. QUENET M, CELLE-JEANTON H, VOLDOIRE J O, et al. Coupling hydrodynamic, geochemical and isotopic approaches to evaluate oxbow connection degree to the main stream and to adjunct alluvial aquifer[J]. Journal of Hydrology, 2019, 577:123936. 张涛, 王明国, 张智印,等. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 41(9):4003-4010. 郭亚文, 田富强, 胡宏昌,等. 南小河沟流域地表水和地下水的稳定同位素和水化学特征及其指示意义[J]. 环境科学, 2020, 41(2):682-690. CABEZAS A, GARCIA M, GALLARDO B, et al. The effect of anthropogenic disturbance on the hydrochemical characteristics of riparian wetlands at the Middle Ebro River (NE Spain)[J]. Hydrobiologia, 2009, 617:101-116. 孔晓乐, 王仕琴, 丁飞,等. 基于水化学和稳定同位素的白洋淀流域地表水和地下水硝酸盐来源[J]. 环境科学, 2018, 39(6):2624-2631. 王为东. 芦苇型水陆交错带中根孔结构及其影响下的水化学研究[D]. 北京:中国科学院研究生院(生态环境研究中心), 2002. 陈毅. 白洋淀流域平原区地下水-孔隙水的水化学特征和水文地球化学过程[D]. 北京:中国地质大学, 2018. 刘园园. 白洋淀湿地生态系统的演变分析及健康评价[D]. 保定:河北农业大学, 2019. 温静,黄大庄.白洋淀流域景观结构和格局时空变化规律及其与地形因子关系[J].河北农业大学学报,2020,43(3):86-95. 魏兴, 周金龙, 乃尉华,等. 新疆喀什三角洲地下水化学特征及演化规律[J]. 环境科学, 2019, 40(9):4042-4051. Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170:1088-1090. 袁悦. 半干旱区内陆湖流域水化学特征研究[D]. 西安:长安大学, 2019. 管春兴. 玛纳斯河流域地表水-地下水转化的水化学及同位素证据[D]. 西安:长安大学, 2019. 郭苗, 张飞, 张海威,等.艾比湖流域地表水水化学特征及空间变异特征分析[J]. 环境工程, 2017, 35(7):146-151. LI Z J, YANG Q C, YANG Y S, et al. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J]. Journal of Hydrology, 2019, 576:685-697. 陈新永, 田在锋, 胡晓波,等. 网箱养殖对白洋淀草型湖泊水质的影响[J]. 水生态学杂志, 2011, 32(1):61-65. 李再兴, 孙悦, 张艺冉,等. 白洋淀冰封期沉积物中氮赋存形态及分布特征[J]. 环境工程, 2019, 37(12):29-33. 石锦丽, 王博欣, 王靖. 河北省河湖生态水量保障的实践与思索[J]. 水利发展研究, 2019, 19(1):40-42. 张雪梅. 河北省引黄补淀输水管理工作回顾[J]. 河北水利, 2015(5):36-37. 期刊类型引用(11)
1. 李文凯,朱畅,门颖欣,冯兴圣,冯荣虎,刘辉,成文虎,雷宏伟,郑天龙. 建筑废弃物对水体有机物和总磷的去除效果及作用方式. 环境保护科学. 2024(02): 117-123 . 百度学术
2. 周磊,李亚兰,张超群,宋文,杨坤,杜明义,陈强,刘扬. 建筑垃圾空间分布、体量及变化量监测和模拟交叉学科研究进展. 环境工程. 2024(03): 243-253 . 本站查看
3. 甘磊. 填埋场工程建设中水土流失综合防治探讨——以J县建筑余土余料填埋场为例. 海河水利. 2024(09): 25-29 . 百度学术
4. 周骏. 废弃混凝土处置现状及典型项目效益研究——以上海市为例. 环境科学与管理. 2024(12): 21-26 . 百度学术
5. 朱美琳,王志强,刘文林,李季,白力,龙吉生. 建筑垃圾制再生砖的经济性分析. 环境卫生工程. 2023(04): 57-62+69 . 百度学术
6. 尹蓉,王忠伟,庞燕,邓欣怡,邓奇缘. 基于系统动力学模型的城市建筑垃圾产生量分析与预测. 建筑经济. 2023(S2): 394-400 . 百度学术
7. 肖慧娟,肖虹雁. 基于CiteSpace的我国建筑垃圾研究知识图谱分析. 中原工学院学报. 2023(06): 28-37+46 . 百度学术
8. 徐雅琪,庞明潇,张皓. 基于GM(1, 1)的建筑废弃物资源化利用研究. 山东工业技术. 2022(01): 62-66 . 百度学术
9. 陈周熠,徐彤. 福建内陆山区市县建筑垃圾的处置和再生利用——以福建省南平市为例. 当代化工研究. 2022(23): 90-92 . 百度学术
10. 张明,王章琼,白俊龙. 武汉市建筑垃圾处理厂的选址适宜性评价. 武汉工程大学学报. 2020(04): 451-455 . 百度学术
11. 吴伟东,陈欣. 基于系统动力学与博弈思想的建筑垃圾预测与管控研究. 科技促进发展. 2020(11): 1458-1467 . 百度学术
其他类型引用(16)
-

计量
- 文章访问数: 584
- HTML全文浏览量: 149
- PDF下载量: 73
- 被引次数: 27