NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL
-
摘要: 为探究水文模型参数敏感性及模型不确定性对径流模拟的影响,运用SWAT模型对挠力河流域地表径流过程进行了数值模拟,利用SUFI-2方法评价模型参数敏感性及不确定性对模拟结果的影响,选取决定系数(R2)与Nash-Sutcliffe效率系数(ENS)对模型精度进行评价。敏感性分析结果表明:对挠力河流域径流模拟影响最大的4个参数是CN2(SCS径流曲线数)、SLSUBBSN (平均坡长)、SOL_BD (土壤湿密度)和SOL_K (土壤饱和导水率),表明SCS径流曲线数、土壤与地形地貌是影响挠力河流域地表径流最重要的因素。月径流模拟过程与实测水文过程拟合较好,率定期和验证期R2与ENS分别为0.68、0.67和0.76、0.44,均达到令人满意的结果。不确定性分析结果表明:p因子为0.78,r因子为0.94,模型不确定性较小,进一步验证了模型的适用性。研究结果可为其他相似流域SWAT模型的应用及参数的率定提供参考。Abstract: Exploring the influence of parameter sensitivity and uncertainty of the hydrological model on runoff simulation has considerable significance. This study used the SWAT model to simulate the surface runoff process in the Naoli River Basin. The SUFI-2 method was used to evaluate the influence of the model parameter sensitivity and uncertainty on the simulation results, while the coefficient of determination (R2) and Nash-Sutcliffe efficiency coefficient (ENS) were selected to evaluate the accuracy of the model. The sensitivity analysis results showed that the four parameters, including the number of CN2.mgt, SLSUBBSN.hru, SOL_BD.sol, and SOL_K.sol were the most significant parameters for the runoff simulation of Naoli River Basin. It showed that CN2, soil and topography were the most important factors affecting the runoff of Naoli River Basin. The monthly runoff simulation process fitted well with the measured hydrological process, and the R2 and ENS were 0.68, 0.67 and 0.76, 0.44 during the period calibration and validation periods, respectively, which reached satisfactory level. The results of uncertainty analysis showed that the p-factor was 0.78 and the r-factor was 0.94, indicating that there was less uncertainty, which further verified the applicability of the model. The results could provide references for SWAT model application and parameter calibration in other similar basins.
-
Key words:
- SWAT model /
- Naoli River Basin /
- surface runoff /
- uncertainty analysis
-
赵彦军,徐宗学,谭秋阳,等. 深圳市降水特征时空演变规律分析[J]. 北京师范大学学报(自然科学版),2019,55(5):564-571. 左斌斌,徐宗学,任梅芳,等. 北京市通州区1966-2016年降水特性研究[J]. 北京师范大学学报(自然科学版),2019,55(5):556-563. GIRI S, NEJADHASHEMI A P, WOZNICKI S A. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed[J]. Journal of Environmental Management, 2012, 103:24-40. KROGH S A, POMEROY J W, MARSH P. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model[J]. Journal of Hydrology, 2017, 550:685-703. 程红光,岳勇,杨胜天,等. 黄河流域非点源污染负荷估算与分析[J]. 环境科学学报,2006(3):384-391. 丁洋,赵进勇,徐征和,等. 基于SWAT模型的平原河湖水网区小流域径流过程模拟[J]. 水生态学杂志,2019,40(2):7-13. ALBERTO M S, CARMELO C G. Suitability of the SWAT model for simulating water discharge and sediment load in a karst watershed of the Semiarid Mediterranean Basin[J]. Water Resources Management, 2020, 34(2):785-802. KHOI D N, THOM V T. Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam[J]. Global Ecology and Conservation, 2015(4):538-548. 杨军军,高小红,李其江,等. 湟水流域SWAT模型构建及参数不确定性分析[J]. 水土保持研究,2013,20(1):2-88,93. ZHANG S T, LIU Y, LI M, et al. Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow[J]. Water Science Technology, 2016(9):249-255. 宋增芳,曾建军,金彦兆,等. 基于SWAT模型和SUFI-2算法的石羊河流域月径流分布式模拟[J]. 水土保持通报,2016,36(5):172-177. 万浩,董晓华,彭涛,等. 基于SWAT模型和SUFI-2算法的黄柏河东支流域径流模拟研究[J]. 中国农村水利水电,2018,(12):94-100. 姚允龙,王蕾. 基于SWAT的典型沼泽性河流径流演变的气候变化响应研究:以三江平原挠力河为例[J]. 湿地科学,2008,(2):198-203. LIU G H, HE Z M, LUAN Z Q. Intercomparison of a lumped model and a distributed model for streamflow simulation in the Naoli River Watershed, Northeast China[J]. Water, 2018, 10(8):1004. 贾思达. 三江平原松花江-挠力河流域地下水与地表水转化关系研究[D]. 长春:吉林大学,2019. 童成立,张文菊,汤阳,等. 逐日太阳辐射的模拟计算[J]. 中国农业气象,2005(3):165-169. 刘博,徐宗学. 基于SWAT模型的北京沙河水库流域非点源污染模拟[J]. 农业工程学报,2011,27(5):52-61,401. 庞靖鹏. 非点源污染分布式模拟[D]. 北京:北京师范大学,2007. MOTOVILOV Y G, GOTTSCHALK L, ENGELAND K, et al. Validation of a distributed hydrological model against spatial observations[J]. Agricultural and Forest Meteorology, 1999, 98/99:257-277. NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I:a discussion of principles[J]. Journal of Hydrology, 1970, 10:282-290. ABBASPOUR K C, YANG J, MAXIMOV I, et al. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT[J]. Journal of Hydrology, 2007, 333(2/3/4):413-430. ENGEBRETSEN A, VOGT R D, BECHMANN M. SWAT model uncertainties and cumulative probability for decreased phosphorus loading by agricultural Best Management Practices[J]. Catena, 2019, 175:154-166. RAIHAN F, BEAUMONT L J, MAINA J, et al. Simulating streamflow in the Upper Halda Basin of southeastern Bangladesh using SWAT model[J]. International Association of Scientific Hydrology Bulletin, 2020, 65(1):138-151. 左德鹏,徐宗学. 基于SWAT模型和SUFI-2算法的渭河流域月径流分布式模拟[J]. 北京师范大学学报(自然科学版),2012,48(5):490-496. 周帅,王义民,郭爱军,等. SWAT模型参数不确定性对黄河上游径流模拟的影响[J]. 西北农林科技大学学报(自然科学版),2019,47(8):144-154. 李谦,张静,宫辉力. 基于SUFI-2算法和SWAT模型的妫水河流域水文模拟及参数不确定性分析[J]. 水文,2015,35(3):43-48. LIU R, XU F, ZHANG P, et al. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT[J]. Journal of Hydrology, 2016, 533:379-388.
点击查看大图
计量
- 文章访问数: 345
- HTML全文浏览量: 12
- PDF下载量: 4
- 被引次数: 0