DIVERSITY OF NITROGEN REMOVAL BACTERIA IN LOW TEMPERATURE SEWAGE TREATED BY A SBMBBR WITH OPCRP FILLER
-
摘要: 针对低温污水生物脱氮效率低问题,采用有机高分子复合硬性颗粒(OPCRP)-SBMBBR反应器处理低温污水,与传统SBR反应器对比,通过Miseq高通量测序技术分析了2套反应器中活性污泥的细菌菌群多样性及组成结构丰度差异,揭示高效处理低温污水优势脱氮菌群。结果表明:在水温(6.5±1)℃条件下,OPCRP-SBMBBR反应器出水脱氮效果及污泥沉降速率均明显提高;投加填料有助于提高活性污泥系统内硝化反硝化菌多样性和相对丰度,即优势氨氧化菌(AOB)、亚硝酸盐氧化菌(NOB)、厌氧反硝化菌总相对丰度分别由SBR (R1)的3.9%、3.47%、15.87%增加到OPCRP-SBMBBR (R2)的5.21%、5.26%、23.64%。异养硝化-好氧反硝化菌种红环菌科、Enterobacteriaceae、Terrimonas,分别由R1的2.77%、1.63%、2.43%增加到R2的3.3%、3.11%、2.59%;R2独有的好氧反硝化菌种包括假单胞菌属、氢噬胞菌属等,其相对丰度分别为1.17%、0.79%。R1、R2中优势好氧反硝化菌种总相对丰度分别为10.66%、17.35%,优势硝化菌种总相对丰度分别为7.37%、10.47%,优势硝化反硝化菌种总相对丰度分别为28.65%、43.32%,为低温污水中生物脱氮提供了良好的细菌环境。
-
关键词:
- 低温污水 /
- 有机高分子复合硬性颗粒 /
- 序批式移动床生物膜反应器 /
- 高通量测序 /
- 硝化反硝化菌群
Abstract: In view of the low biological denitrification efficiency of low-temperature sewage, the low-temperature sewage was treated by an organic polymer composite hard particle bio-carrier(OPCRP)-SBMBBR reactor. Compared with the traditional SBR reactor, two sets of reactors were analyzed by Miseq high-throughput sequencing technology. The difference in bacterial flora diversity and compositional abundance of activated sludge in the medium revealed the efficient treatment of the dominant nitrogen-depleting bacteria in low-temperature sewage. The results showed that under the condition of water temperature at (6.5±1) ℃, the effluent denitrification effect and sludge settling rates of OPCRP-SBMBBR reactor were obviously improved. Adding fillers could improve the diversity of nitrification and denitrifying bacteria in activated sludge system. And the relative abundance, the total abundance of dominant ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and anaerobic denitrifying bacteria increased from 3.9%, 3.47%, and 15.87% of SBR (R1) to 5.21%, 5.26%, 23.64% of (OPCRP)-SBMBBR (R2), respectively. Heterotrophic nitrification-aerobic denitrifying bacteria, including Rhodobacteraceae, Enterobacteriaceae, and Terrimonas increased from 2.77%, 1.63%, and 2.43% of R1 to 3.3%, 3.11%, and 2.5% of R2; and unique aerobic reaction nitrifying strains of R2, Pseudomonas, Hydrogenobacter, their relative abundances were 1.17% and 0.79%, respectively. The total relative abundance of dominant aerobic denitrifying strains in R1 and R2 were 10.66% and 17.35%, respectively; the total relative abundance of dominant nitrifying strains in R1 and R2 was 7.37% and 10.47%, respectively; the total relative abundance of dominant nitrifying and denitrifying strains in R1 and R2 was 28.65% and 43.32%, respectively, which provided a good bacterial environment for biological nitrogen removal in low temperature sewage. -
CHUNG J, BAE W, LEE Y, et al.Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors[J].Process Biochemistry, 2007, 42(3):320-328. 王玉晓,孔秀琴,冯权,等.以亲水化改性聚氨酯为多孔载体的生物膜移动床反应器处理污水中试研究[J].环境科学,2012,33(10):3489-3494. 贲岳,陈忠林,徐贞贞,等.聚氨酯固定高效优势耐冷菌处理低温生活污水[J].哈尔滨工业大学报,2009,41(2):76-80. 佟庆远,孙博,董欣,污水处理厂减排效率的统计评价及影响因素分析[J].中国人口·资源与环境,2019,29(4):49-57. REUTER J A, SPACEK D V, SNYDER M P, et al. High-throughput sequencing technologies[J]. Molecular Cell, 2015,3(58):586-597. PICARD C, FISCHER A I. Contribution of high-throughput DNA sequencing to the study of primary immunodeficiencies[J].European Journal of Immunology, 2014,10(44):2854-2861. GEORGIOU G,IPPOLITO G C. BEAUSANG J, et al. The promise and challenge of high-throughput sequencing of the antibody repertoire[J].Nature Biotechnology, 2014,2,(32):158-168. MCADAM P R, RICHARDSON E J, FITZGERALD J, et al. High-througput sequencing for the study of bacterial pathogen biology[J].Current Opinion in Microbiology, 2014,6(19):106-113. BORNEMAN J, HARTIN R J. PCR primers that amplify fungal rRNA genes from environmental samples[J].Applied and Environmental Microbiology, 2000, 66(10):4356-4360. 吴磊,尹军,韩相奎.等.腐殖活性污泥生化特征及处理效能[J].哈尔滨工业大学学报,2014,46(4):31-35. 徐伟超,蒙小俊,尹莉,等.焦化废水活性污泥中降解硫氰化物细菌种群多样性分析[J].环境科学,2016, 37(7):2689-2695. SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughputpyrosequencing[J].Bioresource Technology, 2015, 186:163-172. 王硕,徐巧,张光生,等.完全混合式曝气系统运行特性及微生物群落结构解析[J].环境科学,2017,38(2):665-671. 贾凡凹.有机氮工业污水缺氧/两级好氧处理系统特征及吹脱除氨研究[D].哈尔滨:哈尔滨工程大学,2014. DAIGGER. Mainstream partial nitritation-anammox in municipal wastewater treatment:status, bottlenecks, and further studies[J].Applied Microbiology and Biotechnology, 2017, 101(4):1365-1383. 高大文,辛晓东.MBR膜污染过程中微生物群落结构与代谢产物分析[J].哈尔滨工业大学学报,2014,46(2):26-32. 魏东洋,肖才林,周雯,等.FeCl3生化耦合技术调控未知诱因的污泥膨胀[J].环境科学,2019,40(11):5040-5047. 杨浩,张国珍,杨晓妮,等.16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J].环境科学,2017,38(4):1704-1716. 李金印.胞外聚合物及其表面物质对活性污泥絮凝沉降性能的影响研究[D]. 重庆:重庆大学,2008. 丁钰,张庭月,黄民生,等.好氧反硝化菌及其在污水处理和环境修复中的研究进展[J].华东师范大学学报(自然科学版),2018(6):1-11,67. KMSTOK I, TRUU J, ODLARE M, et al. Effect of lake water on algalbiomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors[J]. Applied Microbiology and Biotechnology, 2015, 99(15):6537-6549. FUKAMI K, YUZAWA A, NISHIJIMA T, et al.Isolation and prpperties of a bacterium inhibiting the growth of Gymnodinium nagasakiense[J].Nippon Suisan Gakkaishi, 1992, 58(6):1073-1077. CALVO L, VILA X, ABELLA C A, et al. Use of the ammonia-oxidizing bacterial-specific phylogenetic probe Nso1225 as a primer for fingerprint analysis of ammonia-oxidizer communities[J].Applied Microbiology and Biotechnology, 2004, 63(6):715-721. 王硕,徐巧,张光生,等.完全混合式曝气系统运行特性及微生物群落结构解析[J].环境科学,2017, 38(2):665-671. 安治武.微生物制剂对养殖水体的净化效果初步研究[D].青岛:青岛理工大学,2016. 董晶晶.强化脱氮与典型PPCPs去除的好氧颗粒污泥工艺研究[D].杭州:浙江大学,2017. 王子凌.信欣.王锣,等.CANON工艺处理猪场沼液的启动及微生物种群结构分析[J].环境科学学报,2018,38(10):3945-3953. 赵诗惠.基于短程反硝化除磷的ABR-MBR工艺处理生活污水微生物种群分析[D].苏州:苏州科技大学,2017. 肖可可,周律,贺北平,等.城市污水A2/O移动床生物膜工艺菌群结构分析[J].中国给水排水,2016,32(9):20-24,29. 张潇,赵博玮,岳秀萍.取消初沉池对AAO工艺活性污泥微生物结构的影响[J].工业水处理,2019,39(6):30-34.
点击查看大图
计量
- 文章访问数: 156
- HTML全文浏览量: 30
- PDF下载量: 6
- 被引次数: 0