VOCs EMISSION CHARACTERISTICS AND OZONE IMPACT ANALYSIS OF TYPICAL AUTOMOBILE REPAIR ENTERPRISES IN BEIJING
-
摘要: 对北京地区27家汽修企业进行调研,选取2家典型汽修企业进行气袋采样-GC-MS-FID采集及分析,定量分析其VOCs的排放特征,并计算其臭氧生成潜势(OFP)。结果表明:使用不同漆料的汽修企业排放特征不同,水性漆企业非甲烷总烃的排放浓度为0.62~36.49 mg/m3,油性漆企业的排放浓度为0~100.39 mg/m3;水性漆排放的VOCs以烷烃为主,占比高达57.16%,丙烷(39.65%)和甲苯(11.41%)是首要污染物;卤代烃(55.51%)是油性漆企业的主要VOCs排放物种,主要组分为1,2-二氯丙烷和1,2-二氯乙烷;水性漆企业的OFP值为144.78 mg/m3,油性漆企业的OFP值为664.43 mg/m3,大气反应活性最大的物种多为芳香烃,芳香烃对OFP的贡献率分别为52.18%和88.44%。
-
关键词:
- 汽修 /
- 挥发性有机物(VOCs) /
- 排放特征 /
- 组分特征 /
- 臭氧生成潜势(OFP)
Abstract: Through the investigation of 27 auto repair enterprises in Beijing, two typical auto repair enterprises were selected to collect and analyze using the method of air bag sampling-GC-MS-FID, in order to quantitatively analyze the emission characteristics of VOCs, and calculate the ozone generating potential (OFP). The result showed that the emission characteristics of steam repair enterprises using different paints were different. The emission concentration of non-methane total hydrocarbons in water-based paint enterprises was between 0.62~36.49 mg/m3, and the discharge concentration range of oil paint enterprises was 0~100.39 mg/m3. The VOCs emitted by water-based paints were mainly alkanes, accounting for 57.16% of total VOCs, and propane (39.65%) and toluene (11.41%) were primary pollutants. Halogenated hydrocarbon (55.51%) was the main VOCs emission species of oil paint enterprises, and its main components were 1,2-dichloropropane and 1,2-dichloroethane. The OFP of water-based paint enterprises was 144.78 mg/m3, and the oil-forming paint company’s OFP was 664.43 mg/m3. Most of the atmospheric reactive species were aromatic hydrocarbons. The contribution rates of aromatic hydrocarbons to OFP were 52.18% and 88.44%, respectively. -
单源源, 李莉, 刘琼, 等. 基于OMI数据的中国中东部臭氧及前体物的时空分布[J]. 环境科学研究, 2016,29(8):1128-1136. ZHAO Z F. Ground-level O3 pollution effects on food crops in China:a review[C]//7th International Crop Science Congress, Beijing, 2016. 丁洁然, 景长勇. 唐山夏季大气VOCs污染特征及臭氧生成潜势[J]. 环境工程, 2016,34(6):130-135. 闫雨龙, 彭林. 山西省人为源VOCs排放清单及其对臭氧生成贡献[J]. 环境科学, 2016,37(11):4086-4093. YUAN B, HU W W, SHAO M,et al.VOC emissions,evolutions and contributions to SOA formation at a receptor site in eastern China[J].Atmospheric Chemistry and Physics,2013,13(3):6631-6679. 梁文俊,张依铭,任思达,等.汽修行业喷漆废气处理工艺技术进展[J].四川环境,2018,37(6):177-182. 罗自坚.上海市汽修行业环保现状探析[J].时代汽车,2019(9):154-156. 马战火.汽车维修行业喷漆废气VOCs治理现状对比分析[J].绿色科技,2018(14):54-56. 李汉锋,钟剑明,刘俊玲,等.深圳市福田区汽修企业职业病危害情况分析[J].实用预防医学,2019,26(5):616-619. 袁栋福.我国汽车维修行业发展趋势及相关建议[J].汽车实用技术,2019(9):235-237. 王荣.汽车喷漆废气VOCs处理技术应用进展[J].节能与环保,2018(12):72-73. 苏明.涂装喷漆室VOC废气治理措施解析[J].中国设备工程,2019(18):190-192. 林宣乐.汽车涂装喷漆室有机废气净化技术方案及应用[J].现代涂料与涂装,2017,20(5):41-46. 黄桂清.小型汽车喷漆废气VOCs处理技术探讨[J].环境与发展,2019,31(3):71-73. 杨阳.汽修企业VOCs的污染防治措施和建议[J].科技创新导报,2017,14(13):117-118,120. 汽车维修业污染防治技术规范:DB11/T 1426—2017[S]. 汽车维修业大气污染物排放标准:DB 11/1228—2015[S]. 王文秀,王永敏,郑幸成,等.天津市汽修行业VOCs排放清单与排放特征研究[J].广州化工,2017,45(22):123-126. 李洁,谢轶嵩.南京市汽车维修行业VOCs成分谱及臭氧生成潜势[J].中国环境管理干部学院学报,2018,28(5):75-77. 周子航,邓也,张碧,等.成都市武侯区生活源挥发性有机物排放清单研究[J].四川环境,2017,36(6):65-71. 固定污染源废气挥发性有机物的采样气袋法:HJ 732—2014[S]. 刘俊玲,郑晓钧,李汉锋.汽修行业有机溶剂挥发性化学组分分析[J].现代预防医学,2017,44(9):1568-1571. 黄丽,刘石彩,朱光真,等.活性炭对挥发性有机化合物的吸附回收研究进展[J].生物质化学工程,2016,50(1):50-56. 刘文文,方莉,郭秀锐,等.京津冀地区典型印刷企业VOCs排放特征及臭氧生成潜势分析[J].环境科学,2019,40(9):3942-3948. 赵锐,黄络萍,张建强,等.成都市典型溶剂源使用行业VOCs排放成分特征[J].环境科学学报,2018,38(3):1147-1154. VENECEK M A, CARTER W P L, KLEEMAN M J. Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010[J].Journal of the Air & Waste Management Association,2018,68(12):1301-1316.
点击查看大图
计量
- 文章访问数: 285
- HTML全文浏览量: 40
- PDF下载量: 19
- 被引次数: 0