EXPERIMENTAL STUDY ON ACOUSTIC AGGLOMERATION AND COMBINED SPRAY OPTIMIZATION OF FINE PARTICLES AT LOW CONCENTRATION
-
摘要: 常规除尘器无法有效去除PM2.5,而声波能有效增加颗粒物之间的碰撞、团聚,使PM2.5粒径增大,是一种非常有前景的除尘预处理技术。主要研究了声波频率、声压级、初始浓度及停留时间对声波团聚效率的影响,发现在低频声波作用下效果更好,而纯声波作用下最佳团聚效率为44.84%。并对粉尘进行扫描电镜分析,对比了实验前后的粉尘形态,验证了声波对气溶胶颗粒的团聚作用。利用喷雾作为辅助手段,可以进一步提高团聚效率,降低声波团聚的能耗。在相同情况下,添加喷雾可以使团聚效率从43.07%增加到66.48%,说明喷雾联合声波作用是非常有效的除尘预处理技术。Abstract: Fine particles are inflicting great harm on human health due to their small particle size and absorption of hazardous components on them. But the conventional dust remover cannot remove it effectively. Sound wave can effectively increase the collision and agglomeration of particles and increase the particle size of PM2.5, which is a promising dust removal pretreatment technology. The acoustic frequency, sound pressure level (SPL), initial concentration and residence time are the main factors for the acoustic agglomeration efficiency. It was found that the effect was better under the action of low frequency sound wave, but the best agglomeration efficiency was only 43.07% under the action of pure acoustic agglomeration. The dust morphology before and after the experiment was compared by scanning electron microscope, and the agglomeration effect of acoustic wave on aerosol particles was verified. Then this study used spray as an auxiliary means to further improve the agglomeration efficiency and reduce the energy consumption of acoustic agglomeration. The effects of frequency, SPL and spray volume on the agglomeration efficiency were investigated. The agglomeration efficiency increased to 66.48% after spray. It showed that spray combined with acoustic agglomeration was an effective dust removal pretreatment technology.
-
Key words:
- aerosol /
- acoustic agglomeration /
- particle size distribution /
- efficiency /
- optimization
-
侯大伟,潘丹萍,周心澄,等. 石灰石-石膏法脱硫过程中浆液雾化夹带与细颗粒排放的关系[J]. 化工学报,2018,69(4):1714-1722. 昌艳萍,耿超,李春蕾,等. 大气中PM2.5的现状分析及新的思考[J]. 环境科学与技术,2012,35(增刊1):151-154. 朱逢豪,李成,柳树成,等. 北京市PM2.5的研究进展[J]. 环境科学与技术,2012,35(增刊2):152-155. DAVID Y H, CHEN S C, ZUO Z L. PM2.5 in China:measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13(2):1-26. 刘建忠,范海燕,周俊虎,等. 煤粉炉PM10/PM2.5排放规律的试验研究[J]. 中国电机工程学报,2003,23(1):146-150. 杨林军,赵兵,姚刚,等. 燃烧源可吸入颗粒物声波团聚研究进展与展望[J]. 洁净煤技术, 2007,13(5):41-45. SHENG C D, SHEN X L. Simulation of acoustic agglomeration processes of poly-disperse solid particles[J]. Aerosol Science and Technology, 2007, 41(1):1-13. SARABIA R F D, GALLEGO-JUÁREZ J A, ACOSTA-APARICIO V M, et al. Acoustic agglomeration of submicron particles in diesel exhausts:first results of the influence of humidity at two acoustic frequencies[J]. Journal of Aerosol Science, 2000, 31:827-828. 姚刚,赵兵,沈湘林. 燃煤可吸入颗粒物声波团聚效果的实验研究和数值分析[J]. 热能动力工程,2006,21(2):175-178. 陈厚涛,赵兵,徐进,等. 燃煤飞灰超细颗粒物声波团聚清除的实验研究[J]. 中国电机工程学报,2007,27(35):28-32. 颜金培,陈立奇,杨林军. 燃煤细颗粒在过饱和氛围下声波团聚脱除的实验研究[J]. 化工学报,2014,65(8):3243-3249. YAN J P,CHEN L Q,LIN Q. Removal of fine particles in WFGD system using the simultaneous acoustic agglomeration and supersaturated vapor condensation[J]. Powder Technology, 2017,315(35):106-113. 张光学,刘建忠,周俊虎,等. 燃煤飞灰低频下声波团聚的实验研究[J]. 化工学报,2009,60(4):1001-1006. 张光学,刘建忠,周俊虎,等. 频率对燃煤飞灰声波团聚影响的模型及实验验证[J]. 中国电机工程学报,2009,29(17):97-102. ZHANG G X, WANG J Q, CHI Z H, et al. Acoustic agglomeration with addition of sprayed liquid droplets:three-dimensional discrete element modeling and experimental verification[J]. Chemical Engineering Science, 2018, 187:342-353. 王洁,张光学,刘建忠,等. 种子颗粒对声波团聚效率的影响[J]. 化工学报,2011,62(2):355-361. ZHOU D, LUO Z Y, JIANG J, et al. Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment[J]. Powder Technology, 2016, 289(1):52-59. 姚刚. 燃烧源可吸入颗粒物声波团聚研究进展与展望[J]. 洁净煤技术,2007,13(5): 41-45. 陈厚涛,赵兵,章汝心,等. 声波与雾化水滴联合作用增强燃煤PM2.5脱除的实验研究[J]. 中国电机工程学报,2009,29(2):35-40. ZHANG G X, ZHANG L L, WANG J, et al. Improving acoustic agglomeration efficiency by addition of sprayed liquid droplets[J]. Powder Technol, 2017,317: 181-188. ZHANG G X, ZHOU T T, ZHANG L L, et al. Improving acoustic agglomeration efficiency of coal-fired fly-ash particles by addition of liquid binders[J]. Chemical Engineering Journal,2018, 334: 891-899. 陈厚涛,赵兵,徐进,等. 燃煤飞灰超细颗粒物声波团聚清除的实验研究[J]. 中国电机工程学报,2007,27(35):28-32. 期刊类型引用(14)
1. 王亚玲,孙成一,蒋宝,王海林. 洗车废水VOCs的特征、健康风险和异味活性. 环境科学研究. 2025(02): 262-271 . 百度学术
2. 徐志荣,姚轶,李清泉,朱虹,陈凤兰,王浙明,杨忠平. 浙江省汽车维修行业挥发性有机物排放标准制订需求分析与建议. 环境污染与防治. 2024(02): 272-278 . 百度学术
3. 赵海洋,张瑞昌,朱书法,张宁,于卓,魏学锋. 微生物菌种对生物滴滤器处理甲苯性能的影响. 化工环保. 2024(03): 405-410 . 百度学术
4. 王璐,张英磊,范光宇,司晓龙. 朝阳区典型汽修集群VOCs走航监测污染特征分析. 广州化工. 2024(14): 91-94+97 . 百度学术
5. 刘涛,沈振兴,何昆,孙健,张斌,徐红梅,彭勤. 典型汽修企业VOCs排放特征及对臭氧污染影响研究. 环境科学学报. 2024(10): 103-110 . 百度学术
6. 王晓伟,闵朝辉,宋珺,张晶华,赵红兵,曹晨,张弛,刘天赋,刘敬印,黄晓礼,陈亮,刘新. 铁路运输行业VOCs排放特征及全流程管控实施路径. 环境工程. 2024(10): 102-111 . 本站查看
7. 刘旭,周震. 小尺度区域VOCs排放布局优化对夏季OFP影响——以京郊园区为例. 环境科学学报. 2023(10): 236-244 . 百度学术
8. 姚军,张晋华. 苏玛罐预浓缩-双柱气相色谱质谱法测定环境空气中116种挥发性有机物. 广东化工. 2022(02): 104-105+110 . 百度学术
9. 陈鹏,张月,邢敏,李珊珊. 基于排放量和大气反应活性的VOCs污染源分级控制. 环境科学. 2022(05): 2383-2394 . 百度学术
10. 孟祥来,孙扬,廖婷婷,张琛,张成影. 北京市城区夏季VOCs变化特征分析与来源解析. 环境科学. 2022(09): 4484-4496 . 百度学术
11. 刘铁军,孙娟,张雪雨,杜小娟,王祺鑫. 北京市汽车涂装VOCs治理现状与减排潜力分析. 环境影响评价. 2021(02): 22-24+29 . 百度学术
12. 陈鹏,张月,张梁,熊凯,邢敏,李珊珊. 汽车维修行业挥发性有机物排放特征及大气化学反应活性. 环境科学. 2021(08): 3604-3614 . 百度学术
13. 刘宁,张飞云,范圣虎. 乌鲁木齐市“十三五”期间环境空气质量变化及污染原因分析. 新疆环境保护. 2021(03): 17-25 . 百度学术
14. 王海林,杨涛,聂磊,方莉,张中申,郝郑平. 汽修行业挥发性有机物排放与控制现状及对策. 环境科学. 2021(12): 5574-5584 . 百度学术
其他类型引用(1)
-

计量
- 文章访问数: 240
- HTML全文浏览量: 47
- PDF下载量: 6
- 被引次数: 15