TRANSPORT BEHAVIORS AND INFLUENCE FACTORS OF SURFACTANTS IN SUBSURFACE POROUS MEDIA
-
摘要: 表面活性剂在土壤及地下水修复中起作用主要依赖于其在地下多孔介质中的迁移能力,因此深入研究表面活性剂在地下多孔介质中的迁移行为对其在修复领域中的有效应用具有重要意义。通过综述表面活性剂在地下多孔介质中迁移行为的国内外研究进展,深入剖析了表面活性剂迁移所涉及的主要过程、相关迁移模型以及影响因素,指出了现阶段表面活性剂迁移行为研究中存在的不足,并对后续研究重点进行了展望,以期为土壤及地下水修复过程提供相关的理论指导。Abstract: The role of surfactant in soil and groundwater remediation depends on its transport behaviors in subsurface porous media. Therefore, an in-depth study about the transport behavior of surfactants is of great importance for effective application of the surfactants in the remediation. This paper reviewed the research progress on surfactant transport in subsurface porous media, including the main processes and theoretical models of the transport and factors affecting transport processes. In addition, the existing deficiencies and the future directions for the studies on the transport of surfactants in subsurface porous media were proposed to provide relevant theoretical guidance for the soil and groundwater remediation process.
-
Key words:
- surfactants /
- subsurface porous media /
- transport process /
- transport model /
- remediation
-
ZHONG H, LIU G S, JIANG Y B, et al. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation:a review[J]. Biotechnology Advances, 2017, 35(4):490-504. PARIA S. Surfactant-enhanced remediation of organic contaminated soil and water[J]. Advances in Colloid and Interface Science, 2008, 138(1):24-58. WANG Y X, HAN Y C, HUANG X, et al. Aggregation behaviors of a series of anionic sulfonate gemini surfactants and their corresponding monomeric surfactant[J]. Journal of Colloid and Interface Science, 2008, 319(2):534-541. KOOPAL L K. Wetting of solid surfaces:fundamentals and charge effects[J]. Advances in Colloid and Interface Science, 2012, 179:29-42. MANUEL A E, EUGENIO L P, ELENA M C, et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources[J]. Agriculture, Ecosystems & Environment, 2008, 123(4):247-260. WUANA R A, OKIEIMEN F E. Heavy metals in contaminated soils:a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011, 1-20. FROLLINI E, PISCITELLI D, VERGINELLI I, et al. A methodological approach to assess the dissolution of residual lnapl in saturated porous media and its effect on groundwater quality:preliminary experimental results[J]. Water, Air, & Soil Pollution, 2016, 227(10):379-390. TICK G R, HARVELL J R, MURGULET D. Intermediate-scale investigation of enhanced-solubilization agents on the dissolution and removal of a multicomponent dense nonaqueous phase liquid (DNAPL) source[J]. Water Air & Soil Pollution, 2015, 226(11):371-391. LONDERGAN J T, MEINARDUS H W, MARINER P E, et al. DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation[J]. Groundwater Monitoring and Remediation, 2001, 21(4):57-67. SLIZOVSKIY I B, KELSEY J W, HATZINGER P B. Surfactant-facilitated remediation of metal-contaminated soils:efficacy and toxicological consequences to earthworms[J]. Environmental Toxicology and Chemistry, 2011, 30(1):112-123. YU H S, ZHU L Z, ZHOU W. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants[J]. Journal of Hazardous Materials, 2007, 142(1):354-361. PARIA S, YUET P K. Adsorption of non-ionic surfactants onto sand and its importance in naphthalene removal[J]. Industrial & Engineering Chemistry Research, 2007, 46(1):108-113. WU Y N, CHEN W X, DAI C, et al. Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2017, 153:283-287. WANG J, SHAO M A. Solute transport characteristics of a deep soil profile in the Loess Plateau, China[J]. Journal of Arid Land, 2018, 10(4):1-10. SCHINCARIOL R A, ROWE R K. Contaminant Hydrogeology[M]. Boston, USA:Springer Press, 2001:42-51. OLÍVER-RODRÍGUEZ B, ZAFRA-GÓMEZ A, REIS M S, et al. Evaluation of Linear Alkylbenzene Sulfonate (LAS) behaviour in agricultural soil through laboratory continuous studies[J]. Chemosphere, 2015, 131:1-8. 饶品华, 何明. 表面活性剂在土壤中的行为及其对土壤物理特性的影响(综述)[J]. 上海交通大学学报(农业科学版), 2005, 23(3):325-331. TORRENS J L, HERMAN D C, MILLER-MAIER R M. Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions[J]. Environmental Science & Technology, 1998, 32(6):776-781. CHU W, SO W S. Modeling the two stages of surfactant-aided soil washing[J]. Water Research, 2001, 35(3):761-767. YANG K, ZHU L Z, XING B S. Sorption of sodium dodecylbenzene sulfonate by montmorillonite[J]. Environmental Pollution, 2007, 145(2):571-576. ZHONG H, YANG L, ZENG G M, et al. Aggregate-based sub-CMC solubilization of hexadecane by surfactants[J]. RSC Advances, 2015, 5(95):78142-78149. DUAN M, WANG H, FANG S W, et al. Real-time monitoring the adsorption of sodium dodecyl sulfate on a hydrophobic surface using dual polarization interferometry[J]. Journal of Colloid & Interface Science, 2014, 417(3):285-292. ZHONG H, ZHANG H, LIU Z F, et al. Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media[J]. Scientific Reports, 2016, 633266. ZHONG H, YANG L, YANG X, et al. Aggregation of low-concentration dirhamnolipid biosurfactant in electrolyte solution[J]. RSC Advances, 2015, 5(108):88578-88582. 郑佩, 陈芳艳, 唐玉斌, 等. 固定化菌藻微球的制备, 表征及其对富营养化湖水的修复[J]. 环境工程学报, 2014,8(5):1999-2005. RANJAN R S, QIAN Y, KRISHNAPILLAI M. Effects of electrokinetics and cationic surfactant cetyltrimethylammonium bromide[CTAB] on the hydrocarbon removal and retention from contaminated soils[J]. Environmental Technology, 2006, 27(7):767-776. BAILEY K L, TILTON F, JANSIK D P, et al. Growth inhibition and stimulation of Shewanella oneidensis MR-1 by surfactants and calcium polysulfide[J]. Ecotoxicology and Environmental Safety, 2012, 80:195-202. MOUTON J, MERCIER G, BLAIS J F. Amphoteric surfactants for PAH and lead polluted-soil treatment using flotation[J]. Water Air & Soil Pollution, 2009, 197(1/2/3/4):381-393. ROSAS J M, VICENTE F, SANTOS A, et al. Enhancing p-cresol extraction from soil[J]. Chemosphere, 2011, 84(2):260-264. RIOS L E, DAVID M, VAZQUEZ-ARENAS J, et al. Use of surfactants and blends to remove DDT from contaminated soils[J]. The Canadian Journal of Chemical Engineering, 2013, 91(2):238-244. XU Q, WANG L Y, XING F L. Synthesis and properties of dissymmetric gemini surfactants[J]. Journal of Surfactants & Detergents, 2011, 14(1):85-90. ZHONG H, JIANG Y B, ZENG G M, et al. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces[J]. Journal of Hazardous materials, 2015, 285:383-388. VU K A, TAWFIQ K, CHEN G. Rhamnolipid Transport in Biochar-Amended Agricultural Soil[J]. Water Air & Soil Pollution, 2015, 226(8):1-8. YING G G. Fate, behavior and effects of surfactants and their degradation products in the environment[J]. Environment International, 2006, 32(3):417-431. 匡丽, 张学佳, 王宝辉, 等. 表面活性剂在土壤中的环境行为及其危害性分析[J]. 东北林业大学学报, 2008, 36(2):53-55. SCOTT M J, JONES M N. The biodegradation of surfactants in the environment[J]. Biochimica Et Biophysica Acta-Biomembranes, 2000, 1508(1/2):235-251. RENFRO T D. Rhamnolipids biosurfactant transport in agricultural soils[D]. Tallahassee:Florida State University, 2013, 35-46. 熊云武, 黄冠英, 黄权中. 非均质土柱中溶质迁移的连续时间随机游走模拟[J]. 水科学进展, 2006, 17(6):797-802. BEAR J. Dynamics of Fluids in Porous Media[M]. 2nd ed. Haifa:Courier Corporation, 2013:65-113. APPELO C A J, POSTMA D. Geochemistry, Groundwater and Pollution[M]. 2nd ed. London:CRC press, 2004:541-590. LOGAN B E. Environmental Transport Processes[M]. 2nd ed. Hoboken, USA:John Wiley and Sons press, 2012:408-444. CORTIS A, BERKOWITZ B. Anomalous transport in "classical" soil and sand columns[J]. Soil Science Society of America Journal, 2004, 68(5):1539-1548. VU K A. Rhamnolipid Biosurfactant Adsorption and Transport in Biochar Amended Agricultural Soil[D]. Tallahassee:Florida State University, 2013:31-38. RYDE N P, MATIJEVIC' E. Deposition and detachment studies of fine particles by the packed column technique[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2000, 165(1):59-78. RENFRO T D, XIE W J, YANG G, et al. Rhamnolipid surface thermodynamic properties and transport in agricultural soil[J]. Colloids & Surfaces B Biointerfaces, 2014, 115:317-322. MCAVOY D C, ECKHOFF W S, RAPAPORT R A. Fate of linear alkylbenzene sulfonate in the environment[J]. Environmental Toxicology & Chemistry, 1993, 12(6):977-987. OLÍVER-RODRÍGUEZ B, ZAFRA-GÓMEZ A, REIS M S, et al. Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil[J]. Chemosphere, 2015, 138(1):148-155. KUTNER R, MASOLIVER J. The continuous time random walk, still trendy:fifty-year history, state of art and outlook[J]. European Physical Journal B, 2017, 90(50):1-13. LI N, REN L. Application of continuous time random walk theory to nonequilibrium transport in soil[J]. Journal of Contaminant Hydrology, 2009, 108(3):134-151. XIONG Y W, HUANG G H, HUANG Q Z. Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk[J]. Journal of Contaminant Hydrology, 2006, 86(3):163-175. 熊云武. 溶质非费克迁移的连续时间随机游走模拟研究[D]. 北京:北京农业大学, 2006. SOLTANI D S, KOHL J, JU L K. Rhamnolipid adsorption in soil:factors, unique features, and considerations for use as green antizoosporic agents[J]. Journal of Agricultural and Food Chemistry, 2016, 64(17):3330-3337. BOLUDA-BOTELLA N, LEÓN V M, CASES V, et al. Fate of linear alkylbenzene sulfonate in agricultural soil columns during inflow of surfactant pulses[J]. Journal of Hydrology, 2010, 395(3/4):141-152. LAVELLE P, SPAIN A. Soil Ecology[M]. 2nd ed. Netherlands; Springer, 2001:1-36. QI Y, ZHANG T C, REN Y Z. Testosterone sorption and desorption:effects of soil particle size[J]. Journal of Hazardous Materials, 2014, 279:493-501. MULLIGAN C N, YONG R N, GIBBS B F. Surfactant-enhanced remediation of contaminated soil:a review[J]. Engineering Geology, 2001, 60(1):371-380. 戚兴超, 刘艳丽, 焦安昊, 等. 离子型表面活性剂对菠菜生长与土壤酶活性的影响[J]. 农业资源与环境学报, 2016, 35(6):1048-1055. NOORDMAN W H, BRUSSEAU M L, JANSSEN D B. Adsorption of a multicomponent rhamnolipid surfactant to soil[J]. Environmental science & technology, 2015, 34(5):832-838. ALCÁNTARA M T, GÓMEZ J, PAZOS M, et al. Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation[J]. Chemosphere, 2008, 70(8):1438-1444. AZAR M N, SHARVELLE S, STROMBERGER M, et al. Fate of surfactants in soil after graywater application for landscape irrigation[J]. Proceedings of the Water Environment Federation, 2010, 13:3864-3865. PARIA S, KHILAR K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface[J]. Advances in Colloid & Interface Science, 2004, 110(3):75-95. SOMASUNDARAN P, KRISHNAKUMAR S. Adsorption of surfactants and polymers at the solid-liquid interface[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1997, 123:491-513. SWISHER R D. The chemistry of surfactant biodegradation[J]. Journal of the American Oil Chemists Society, 1963, 40(11):648-656. 郭睿, 胡应燕, 彭丽, 等. 表面活性剂生物降解性能的研究[J]. 日用化学品科学, 2009, 32(8):20-24. 黄志贞, 陈宗淇, 薛美玲, 等. 盐类和温度对非离子型表面活性剂溶液黏度的影响[J]. 高等学校化学学报, 1992, 13(6):824-827. 王犁. 基于pH响应的表面活性剂分子自组装研究[D]. 成都:西南石油大学, 2015. ZHANG J, MENG Y G, TIAN Y, et al. Effect of concentration and addition of ions on the adsorption of sodium dodecyl sulfate on stainless steel surface in aqueous solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 484:408-415. HARENDRA S, VIPULANANDAN C. Sorption and transport studies of cetyl trimethylammonium bromide (CTAB) and Triton X-100 in clayey soil[J]. Journal of Environmental Sciences, 2013, 25(3):576-584. MALATI M A, ESTEFAN S F. Activation of quartz by alkaline earth cations in oleate flotation[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 2010, 17(7):209-212.
点击查看大图
计量
- 文章访问数: 150
- HTML全文浏览量: 15
- PDF下载量: 2
- 被引次数: 0