ASSESSMENT AND SCENARIO ANALYSIS OF ON-ROAD VEHICLE GREENHOUSE GASES EMISSION: A CASE STUDY OF BEIJING
-
摘要: 基于LEAP模型(long-range energy alternatives planning system)评估北京市历史阶段(2000—2018年)道路机动车温室气体排放量的变化规律,并设置5种情景预测未来阶段(2019—2030年)机动车保有量、能源需求、温室气体排放量的发展趋势,探究达峰年份,寻求最优发展路径。结果显示:未来北京市机动车保有量仍将持续增长,但平均年增长率降低至1.63%。机动车温室气体排放总量已于2013年达峰,峰值为21758563 t CO2e,对应能源消耗量为306383 TJ,未来所有情景下机动车温室气体排放量均呈不同程度下降。单一措施中提高机动车燃料经济性的减排效果最佳,综合3种减排措施的ODS情景(最优发展情景)是最优发展路径。Abstract: Based on the LEAP model (long-range energy alternatives planning system), this study evaluated the variation law of on-road vehicle greenhouse gases (GHGs) emissions in the historical stage of Beijing (2000—2018), and developed five different scenarios to predict the development trend of vehicle stock, energy demand and GHGs emissions in the future (2019—2030). In addition, we explored the peaking year of vehicle GHG emissions of Beijing, as well as the optimal development path. The results showed that the vehicle stock would continue to increase in the future, but the average annual growth rate would reduce to 1.63%. Total vehicle GHGs emissions peaked in 2013 at 21758563 t CO2e, corresponding to the energy consumption of 306383 TJ. In all future scenarios, vehicle GHGs emissions would decline. Improving the fuel efficiency of motor vehicles was the best way to reduce emission when implementing single emission reduction measures. And ODS (optimal development scenario) that integrated the three emission reduction measures was the optimal development path.
-
Key words:
- on-road vehicle /
- greenhouse gases emissions /
- scenario analysis /
- peaking year
-
International Energy Agency (IEA). Tracking Transport[DB/OL]. 2019, https://www.iea.org/reports/tracking-transport-2019. WANG H L, OU X M, ZHANG X L. Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050[J]. Energy Policy, 2017,109:719-733. TANG B J, LI X Y, YU B Y, et al. Sustainable development pathway for intercity passenger transport:a case study of China[J]. Applied Energy, 2019,254:113632. LI X, YU B Y. Peaking CO2 emissions for China's urban passenger transport sector[J]. Energy Policy, 2019,133:110913. HAO H, GENG Y, LI W Q, et al. Energy consumption and GHG emissions from China's freight transport sector:scenarios through 2050[J]. Energy Policy, 2015,85:94-101. YAN X Y, CROOKES R J. Reduction potentials of energy demand and GHG emissions in China's road transport sector[J]. Energy Policy, 2009,37:658-668. OU X M, ZHANG X L, CHANG S Y. Scenario analysis on alternative fuel/vehicle for China's future road transport:life-cycle energy demand and GHG emissions[J]. Energy Policy, 2010,38:3943-3956. PENG T D, YUAN Z Y, OU X M, et al. Analysis of future vehicle fuel demand and direct CO2 emissions in China[J]. Energy Procedia, 2017,142:2767-2772. 刘俊伶,孙一赫,王克,等.中国交通部门中长期低碳发展路径研究[J].气候变化研究进展,2018,14(5):513-521. ZHAO F Q, LIU F Q, LIU Z W, et al. The correlated impacts of fuel consumption improvements and vehicle electrification on vehicle greenhouse gas emissions in China[J]. Journal of Cleaner Production, 2019,207:702-716. WANG H K, FU L X, BI J. CO2 and pollutant emissions from passenger cars in China[J]. Energy Policy, 2011,39:3005-3011. HAO H, WANG H W, OUYANG M G. Fuel consumption and lifecycle GHG emissions by China's on-road trucks:future trends through 2050 and evaluation of mitigation measures[J]. Energy Policy, 2012,43:244-251. 黄莹, 郭洪旭, 廖翠萍, 等. 基于LEAP模型的城市交通低碳发展路径研究:以广州市为例[J].气候变化研究进展, 2019,15(6):670-683. 于灏,杨瑞广,张跃军,等.城市客运交通能源需求与环境排放研究:以北京为例[J].北京理工大学学报(社会科学版),2013,15(5):10-15. 周健, 崔胜辉,林剑艺,等.基于LEAP模型的厦门交通能耗及大气污染物排放分析[J].环境科学与技术,2011,34(11):164-170. PENG B B, DU H B, MA S F, et al. Urban passenger transport energy saving and emission reduction potential:A case study for Tianjin, China[J]. Energy Conversion and Management, 2015,102:4-16. FAN J L, WANG J X, LI F Y, et al. Energy demand and greenhouse gas emissions of urban passenger transport in the Internet era:a case study of Beijing[J]. Journal of Cleaner Production, 2017,165:177-189. 宋明智. 北京城市碳排放量与影响指标分析[J]. 环境工程, 2016, 34(增刊1):1125-1131,1154. 崔铁宁, 胡娜. 基于投入产出分析的北京市交通运输业碳排放关联度研究[J]. 环境工程, 2014, 32(7):170-174. 北京交通发展研究院. 2019北京市交通发展年度报告[R]. 2019. 高德地图, 2019年度中国主要城市交通分析报告[R/OL].2019. https://report.amap.com/share.do?id=8b04ff737067a78601707b2ba0542d72. 全国汽车标准化技术委员会. 乘用车燃料消耗量限值:GB 19578-2014[S]. 北京:中国标准出版社, 2014. 全国汽车标准化技术委员会. 轻型商用车辆燃料消耗量限值:GB 20997-2015[S]. 北京:中国标准出版社, 2015. 新版《轻型商用车辆燃料消耗量限值》国标将于2018年实施[J]. 专用汽车, 2016(2):88. 国务院印发《节能与新能源汽车产业发展规划(2012-2020年)》[J]. 中国金属通报, 2012(26):11. 于占波. 工信部:解读《中国制造2025》规划系列之推动节能与新能源汽车发展[J]. 商用汽车, 2015(6):23-26. 于杰. 节能与新能源汽车技术路线图正式发布[J]. 汽车纵横, 2016(11):82-85. 工业和信息化部装备工业司. 新能源汽车产业发展规划(2021-2035年)(征求意见稿)[R]. 2019. 杨卫华, 初金凤, 吴哲, 等. 新能源汽车碳减排计算及其影响因素分析[J]. 环境工程, 2014,32(12):148-152. 北京公交集团. 2018北京公交集团社会责任报告[R]. 2018. 北京市交通委员会, 北京市"十三五"时期交通发展建设规划[R]. 2016. 肖翠翠, 冯相昭. 我国淘汰高排放车辆政策评估:以北京为例[J]. 环境工程, 2016, 34(9):140-143,147. 北京市交通委员会. 关于对部分机动车采取交通管理措施降低污染物排放的通告[R]. 2014. 北京市人民政府. 北京市人民政府关于实施工作日高峰时段区域限行交通管理措施的通告[R]. 2014. 彭小红, 邱兆文. 从道路设计角度改善交通空气质量的可行性分析[J]. 环境工程, 2016, 34(9):76-79. 北京市交通委员会. 关于对部分载货汽车采取交通管理措施降低污染物排放的通告[R]. 2017.
点击查看大图
计量
- 文章访问数: 165
- HTML全文浏览量: 14
- PDF下载量: 40
- 被引次数: 0