ANALYSIS ON MICROBIAL DIVERSITY IN THE RHIZOSPHERE OF CONSTRUCTED WETLANDS BY PHOSPHOLIPID FATTY ACIDS BIOMARKERS
-
摘要: 采用磷脂脂肪酸(PLFAs)生物标记法,分析了4组人工湿地分别栽种2种植物情况下植物根际土壤的微生物群落结构。结果表明:4组湿地植物根际土壤中PLFAs总量为1322~2769 μg/g,PLFAs种类为18~30,湿地植物根际土壤中PLFAs主要包含饱和脂肪酸和单不饱和脂肪酸;植物根际土壤中细菌含量最高,其中好养菌含量显著高于厌氧菌。对PLFAs总量和湿地设计运行参数进行Pearson相关分析,PLFAs含量与基质孔隙率和进水水质呈显著正相关。Abstract: The microbial community structure of rhizosphere soils in four groups of constructed wetlands were analyzed by phospholipid fatty acid (PLFAs) biomarker method. The results showed that the total amount of phospholipid fatty acid biomarker (PLFAs) in rhizosphere soil of four groups varied from 1322 μg/g to 2769 μg/g, and the range of PLFAs sorts number varied from 18 to 30. PLFAs in wetland plant rhizosphere soil mainly contained saturated fatty acids and monounsaturated fatty acids. The content of bacteria in plant rhizosphere soil was the highest, and the content of well-nourished bacteria was significantly higher than that of anaerobes. The total amount of PLFAs and the design and operation parameters of wetland were analyzed by Pearson correlation analysis. The results showed that the content of PLFAs was positively correlated with matrix porosity and influent water quality.
-
Key words:
- constructed wetlands /
- rhizosphere /
- microorganism /
- phospholipid fatty acids /
- diversity
-
王磊, 李文朝, 柯凡,等. 低氧接触氧化/微曝气人工湿地工艺净化污染河水[J]. 中国给水排水,2008, 24(5):22-26. STOTTMEISTER U, WIESSNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances,2003, 22(1):93-117. FAULWETTER J L, GAGNON V, SUNDBERG C, et al. Microbial processes influencing performance of treatment wetlands:a review review article[J]. Ecological Engineering,2009, 35(6):987-1004. 熊家晴, 李珊珊, 葛媛, 等. 处理高污染河水垂直流人工湿地微生物群落特性[J]. 环境工程学报,2017, 11(3):1959-1965. MCCARTHY C, MURRAY L. Viability and metabolic features of bacteria indigenous to a contaminated deep aquifer[J]. Microbial Ecology,1996, 32(3):305-321. BROCK T D. The study of microorganisms in situ:progress and problems[C]. Proceedings of the Symp Soc Gen Microbiol,1987, 1-17. WHITE D. Biomass measurements:biochemical approaches[J]. Manual of Environmental Microbiology,1997, 91-101. WILLERS C, JANSEN VAN RENSBURG P J, CLAASSENS S. Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications[J]. Journal of Applied Microbiology,2015, 119(5):1207-1218. FROSTEGÅRD Å, TUNLID A, BÅÅTH E. Use and misuse of PLFA measurements in soils[J]. Soil Biology and Biochemistry,2011, 43(8):1621-1625. HACKL E, PFEFFER M, DONAT C, et al. Composition of the microbial communities in the mineral soil under different types of natural forest[J]. Soil Biology & Biochemistry,2005, 37(4):661-671. RUTGERS M, WOuteres M, DROST S M, et al. Monitoring soil bacteria with community-level physiological profiles using BiologTM ECO-plates in the Netherlands and Europe[J]. Applied Soil Ecology,2016, 97:23-35. 姬洪飞, 王颖. 分子生物学方法在环境微生物生态学中的应用研究进展[J]. 生态学报,2016, 36(24):8234-8243. CAHYANI V R, MATSUYA K, ASAKAWA S, et al. Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis[J]. Soil Science & Plant Nutrition,2004, 50(4):555-563. 陈敏玲, 李伟华, 陈章和. 不同层面上微生物多样性研究方法[J].生态学报,2008, 28(12):6264-6271. 洪丕征, 刘世荣, 王晖, 等.南亚热带红椎和格木人工幼龄林土壤微生物群落结构特征[J]. 生态学报,2016, 36(14):4496-4508. 李南洁, 曾清苹, 何丙辉,等. 缙云山柑橘林土壤微生物磷脂脂肪酸(PLFAs)及酶活[J]. 环境科学,2017, 38(1):309-317. 林庆梅, 陈进才, 李玉桂, 等. 海洋沉积物中磷脂类化合物中脂肪酸的GC-MS分析[J]. 分析仪器,2001(2):19-21. LECHEVALIER M P, MOSS C W. Lipids in bacterial taxonomy:a taxonomist's view[J]. CRC Critical Reviews in Microbiology,1977, 5(2):109-210. GREEN C T, SCOW K M. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers[J]. Hydrogeology Journal,2000, 8(1):126-141. ZELLES L, BAI Q Y, BECK T, et al. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils[J]. Soil Biology & Biochemistry,1992, 24(4):317-323. ANDERSON, T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biology & Biochemistry,2003, 35(7):955-963. JOERGENSEN R G, POTTHOFF M. Microbial reaction in activity, biomass, and community structure after long-term continuous mixing of a grassland soil[J]. Soil Biology & Biochemistry,2005, 37(7):1249-1258. HU L, WANG C T, WANG G X. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages ofalpine meadows in the headwater region of three rivers, China[J]. Acta Prataculturae Sinica,2014, 23(3):8-19. SAKAMOTO K, ⅡJIMA T, HIGUCHI R. Use of specific phospholipid fatty acids for identifying and quantifying the external hyphae of the arbuscular mycorrhizal fungus Gigaspora rosea[J]. Soil Biology & Biochemistry, 2004, 36(11):1827-1834. 刘锐,马腾,邱文凯,等. 江汉平原冲积相黏土沉积物有机碳的赋存特征[J].环境科学与技术,2019, 42(3):47-54. 叶建峰, 徐祖信, 李怀玉. 垂直潜流人工湿地堵塞机制:堵塞成因及堵塞物积累规律[J]. 环境科学,2008, 29(6):1508-1512. 郑雪芳,刘波,朱育菁.青枯病植物疫苗对番茄根系土壤微生物群落结构的影响[J]. 中国生物防治学报, 2017, 33(3):385-393. 徐苗, 段魏魏,赵亚光,等. 石油污染土壤理化性质对微生物代谢特征的影响[J]. 环境工程,2018, 36(2):178-183.
点击查看大图
计量
- 文章访问数: 214
- HTML全文浏览量: 20
- PDF下载量: 4
- 被引次数: 0