EXPERIMENTAL STUDY ON REDUCTION OF OXYTETRACYCLINE RESIDUE BY ALKALINITY OF NaOH’s DOSAGES
-
摘要: 为探究碱-水热处理土霉素菌渣时NaOH投加量对SS、TS、土霉素、COD等含量的影响,调节菌渣含水率为98%,设置碱投加量分别为0.06,0.08,0.10,0.12,0.14 g/g,在120℃下水热反应2 h。通过测定反应前后TS、SS、土霉素、COD的含量及pH值分析得出,混合液TS、SS减量率变化趋势相同,均随着NaOH投加量增加先显著升高后略微下降,且均在碱投加量为0.12 g/g时达到最大(分别为14.36%和44.13%)。COD溶出率与SS减量率变化趋势相同,碱投加量为0.12 g/g时COD溶出率达到最大(45.82%),菌渣溶胞SS减量亦效果最佳。土霉素减量率变化趋势则相反,过高的碱投加量并不利于土霉素的去除,土霉素减量率在碱投加量为0.08 g/g时最高,平均达到99.99%;pH值在反应后明显下降,下降幅度与TS、SS减量率呈正相关。Abstract: In order to explore the influence of NaOH dosage acting on the contents of SS, TS, oxytetracycline and COD during alkal-water heat treatment, the alkali dosage was controlled as 0.06 g NaOH/g TS, 0.08 g NaOH/g TS, 0.10 g NaOH/g TS, 0.12 g NaOH/g TS and 0.14 g NaOH/g TS respectively, reacting for 2 h at 120 ℃. Before and after reaction, we measured the contents of TS, SS, oxytetracycline, COD and pH value. It was found that reduction quantity rates of TS and SS in the miscible liquids all increased significantly with the increase of NaOH dosage at first, and then decreased slightly, and all reached the maximum(14.36% and 44.13% respectively ) when the alkali dosage was 0.12 g NaOH/g TS. The change trend of COD dissolution efficiency was similar to the removal efficiency of SS, and the maximum dissolution efficiency (45.82%) was achieved when the alkali dosage was 0.12 g NaOH/g TS. Therefore, the highest cytolytic decrease efficiency of bacterial residue was achieved when the alkali dosage was 0.12 g NaOH/g TS. But the change trend of oxytetracycline reduction efficiency was reversed, as the excessive alkali dosage was not conducive to the removal of oxytetracycline, and the reduction quantities of oxytetracycline reached the peak with an average value of 99.99% when the alkali dosage was 0.08 g NaOH/g TS. The pH value decreased significantly after the reaction, and its extent was positively related to the reduction rates of TS and SS.
-
Key words:
- oxytetracycline residue /
- alkali-hydrothermal treatment /
- NaOH dosage /
- decrement
-
姜国平, 赵俊娜, 李贵霞, 等. 土霉素废水处理技术研究进展[J]. 煤炭与化工, 2014, 37(4):143-146. ELENA M C, CARMEN G B, SIGRID S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria[J]. Environmental Pollution, 2007, 148(2):570-579. SUNG-CHUL K, KENNETH C. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed[J]. Water Research, 2006, 40(13):2549-2560. HE Y J, NURUL S, SCHMITT H, et al. Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents[J]. Science of The Total Environment, 2018,631/632:1572-1581. AHMET A, VOLKAN A, ARZU K. Assessment of the association between drug disposal practices and drug use and storage behaviors[J]. Saudi Pharmaceutical Journal, 2018, 26(1):7-13. 李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2016, 30(2):72-75. SUZANA Ž, MARTIN D, ŠTEFAN P, et al. Degradation and dissipation of the veterinary ionophore lasalocid in manure and soil[J]. Chemosphere, 2015,138:947-951. YANG L, ZHANG S H, CHEN Z Q, et al. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge[J]. Bioresource Technology, 2016,204:185-191. 公丕成, 蔡辰, 张博, 等. 我国抗生素菌渣资源化研究新进展[J]. 环境工程, 2017, 35(5):107-111. 孙效新, 黄栋, 李建民, 等. 抗生素废菌渣液厌氧生物处理试验研究[J]. 中国沼气, 1990,8(3):11-14. AO L L, QIN L Z, KANG H, et al. Preparation, properties and field application of biodegradable and phosphorus-release films based on fermentation residue[J]. International Biodeterioration & Biodegradation, 2013,82:134-140. 何玉凤, 杨凤林, 胡绍伟, 等. 碱处理促进剩余污泥高温水解的试验研究[J]. 环境科学, 2008,29(8):2260-2265. TYAGI V K, LO S L. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion:an up to date review[J]. Reviews in Environmental Science and Bio/Technology, 2011, 10(3):215-242. 肖本益, 阎鸿, 魏源送. 污泥热处理及其强化污泥厌氧消化的研究进展[J]. 环境科学学报, 2009, 29(4):673-682. BAO H X, YANG H, ZHANG H, et al. Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system[J]. Environmental Research, 2020,180:1-7. 黄宇钊, 冼萍, 李桃, 等. 热碱处理污泥协同餐厨垃圾两相厌氧消化的特性[J]. 环境工程, 2018, 36(9):119-124. 陈蓓蓓. 碱热处理破解污泥效果及脱水性能研究[D]. 马鞍山:安徽工业大学, 2013. ZHONG W Z, LI G X, GAO Y, et al. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment[J]. Biotechnology & Biotechnological Equipment, 2015, 29(3):522-529. ZHONG W Z, LI Z X, YANG J L, et al. Effect of thermal-alkaline pretreatment on the anaerobic digestion of streptomycin bacterial residues for methane production[J]. Bioresource Technology, 2014, 151:436-440. 耿晓玲. 基于"强化碱解+H2O2氧化"土霉素菌渣物化减量化技术研究[D]. 石家庄:河北科技大学, 2016. 李贵霞, 钟为章, 王贺飞, 等. 碱/超声对土霉素菌渣溶胞效果的影响[J]. 环境科学与技术, 2018, 41(2):133-138. 吴树洁, 刘惠玲, 段子恒, 等. 分散固相萃取/高效液相色谱法测定土霉素菌渣中土霉素的残留量[J]. 环境保护科学, 2016, 42(1):111-115. 李洋洋, 金宜英, 李欢, 等. 碱热联合破解污泥效果及动力学研究[J]. 中国环境科学, 2010, 30(9):1230-1234. MACHNICKA A, NOWICKA E, GRÜBEL K. Disintegration as a key-step in pre-treatment of surplus activated sludge[J]. Journal of Water Chemistry and Technology, 2017, 39(1):47-55. 邱春生, 杜广春, 骆尚廉, 等. 预处理方式对剩余污泥水解及厌氧产甲烷性能的影响[J]. 环境工程, 2016, 34(3):133-136. 钟为章, 李玉冰, 高湘, 等. 碱/超声预处理对头孢菌素菌渣破壁效果的影响[J]. 环境工程, 2016, 34(5):99-103. OH S E, YOON J Y, GURUNG A, et al. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells[J]. Bioresource Technology, 2014, 165:21-26. 肖本益, 刘俊新. 污水处理系统剩余污泥碱处理融胞效果研究[J]. 环境科学, 2006,27(2):319-323. 杨世东, 陈霞, 刘操, 等. 热碱处理对污水处理厂污泥特性的影响研究[J]. 环境科学, 2015, 36(2):619-624. 查湘义, 韩春威, 宫磊. 水热预处理对剩余污泥有机物释放的影响[J]. 工业水处理, 2017, 37(10):35-38. 肖本益, 刘俊新. 不同预处理方法对剩余污泥性质的影响研究[J]. 环境科学, 2008,29(2):327-331. 王治军, 王伟. 剩余污泥的热水解试验[J]. 中国环境科学, 2005, 25(增刊1):56-60.
点击查看大图
计量
- 文章访问数: 108
- HTML全文浏览量: 9
- PDF下载量: 2
- 被引次数: 0