RECOVERY OF TITANIUM, VANADIUM AND TUNGSTEN FROM WASTE SCR DENITRATION CATALYST BY DRY-WET PROCESS
-
摘要: 利用干湿法结合工艺实现废弃SCR脱硝催化剂中Ti、V和W元素的高效分离和浸出,提出成套废弃SCR脱硝催化剂中Ti、V和W的回收技术。以废弃SCR脱硝催化剂为研究对象,优选Ti、V和W元素最佳浸出工况,研究硫酸溶解法回收TiO2和有机萃取法回收V2O5和WO3的回收率与纯度。结果表明:酸浸还原浸钒最优工艺条件为温度140℃,液固比30∶1;钠化焙烧浸钨最优工艺条件为煅烧温度750℃,反应物与Na2CO3配比(质量比)为1∶1.5,在以上条件下V、W浸出率分别达到97.6%、93.6%。利用硫酸溶解法回收得到的TiO2产物主要以锐钛矿晶型存在形式,在最佳焙烧温度750℃下,TiO2回收率达到97.17%,纯度为95.35%。利用有机萃取法回收得到的V2O5和WO3产物的回收率和纯度分别为72.47%、75.43%和93.25%、78.26%。Abstract: In this paper, the efficient separation and leaching of Ti, V and W elements in the waste SCR denitration catalyst were carried out by the dry-wet method, and the recovery technology of Ti, V and W in the waste SCR denitration catalyst was proposed. Taking waste SCR denitration catalyst as the research object, the leaching conditions of Ti, V and W elements were optimized, and the recovery rate and purity of TiO2 recovered by sulfuric acid dissolution method and V2O5 and WO3 recovered by organic extraction method were also researched. The results showed that the optimal process conditions for acid leaching and reduction of vanadium were temperature of 140 ℃, liquid-solid ratio of 30:1; and the optimal process conditions for sodium roasting and leaching of tungsten were roasting temperature of 750 ℃, reactants and Na2CO3 ratio of 1:1.5. Under the above reaction conditions, the leaching rates of V and W were 97.6% and 93.6%, respectively. The TiO2 product recovered by the sulfuric acid dissolution method mainly existed in the form of anatase crystal. At the optimum roasting temperature of 750 ℃, the recovery rate of TiO2 was 97.17% and the purity rate was 95.35%. The recovery and purity rate of the V2O5 and WO3 products recovered by the organic extraction method were 72.47%, 75.43%, and 93.25%, 78.26%, respectively.
-
曾瑞. 浅谈SCR废催化剂的回收再利用[J]. 中国环保产业,2013(2):39-42. 喻小伟,周瑜,刘帅, 等. SCR脱硝催化剂失活原因分析及再生处理[J]. 热力发电, 2014, 43(2):109-113. LEE J B, EOM Y S, KIM J H, et al. Regeneration of waste SCR catalyst by air lift loop reactor[J]. Journal of Central South University, 2013, 20(5):1314-1318. 赵炜, 于爱华, 王虎, 等. 湿法工艺回收板式SCR废弃催化剂中的钛、钒、钼[J]. 化工进展, 2015, 34(7):2039-2042. 火电厂脱硝催化剂报废高峰将至回收再利用势在必行[J].技术与市场, 2018, 25(10):4. 余岳溪, 廖永进, 李娟, 等. 废弃SCR脱硝催化剂无害化处理的研究进展[J]. 环境工程, 2016, 34(6):136-139. CHIENG H I, ZEHRA T, LIM L B L, et al. Sorption characteristics of peat of Brunei Darussalam Ⅳ:equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution[J]. Environmental Earth Sciences, 2014, 72(7):2263-2277. 黄力, 王虎, 李倩, 等. V2O5-WO3/TiO2脱硝催化剂回收研究进展[J]. 中国资源综合利用, 2016, 34(4):34-37. 林德海, 宋宝华, 王中原. 废弃SCR脱硝催化剂资源回收[J]. 山东化工, 2013, 42(4):8-10. HE K B, YANG F M, MA Y L, et al. The characteristics of PM2.5 in Beijing, China[J]. Atmosph eric Environment, 2001, 35(29):4959-4970. 刘海沛. 废弃钒钛脱硝催化剂资源化利用研究[D]. 南京:南京工业大学, 2016. KIM J W, LEE W G, HWANG I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28:73-77. KIM H R, LEE J Y, KIM J S. Leaching of vanadium and tungsten from spent SCR catalysts for de-NOx by soda roasting and water leaching method[J]. Journal of the Korean Institute of Resources Recycling, 2012, 21(6):65-73. ZHAO Z P, GUO M, ZHANG M. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method[J]. Journal of Hazardous Materials, 2015, 286:402-409. 李力成, 王磊, 赵学娟, 等. 几种酸在废弃脱硝催化剂中提钒效果的比较[J].中国有色金属学报, 2016, 26(10):2230-2237. 张兵兵,于丹丹,王芳,等.废脱硝催化剂中五氧化二钒回收工艺研究[J].河南科学, 2016,34(6):866-870. 罗建斌, 王勇利, 吕宏达, 等.一种从废弃SCR催化剂中提取钨、钛、钒的方法:中国,CN102936049A[P]. 2014-02-20. 刘清雅, 刘振宇, 李启超.一种从废弃钒钨钛基脱硝催化剂中回收钒、钨和钛的方法:中国, CN103484678A[P]. 2014-01-01. 陈晨. 废弃SCR脱硝催化剂成分回收[D]. 北京:华北电力大学, 2016. 刘子林, 王宝冬, 马瑞新,等. 废SCR催化剂钠化焙烧回收钨和钒的机理探究[J]. 无机盐工业, 2016, 48(7):63-67. 符春林, 魏锡文. 二氧化钛晶型转变研究进展[J]. 涂料工业, 1999, 29(2):28-30.
点击查看大图
计量
- 文章访问数: 254
- HTML全文浏览量: 59
- PDF下载量: 6
- 被引次数: 0