EXPERIMENTAL STUDY ON PREPARATION OF SLAG FIBER FROM BLAST FURNACE SLAG AND FLY ASH
-
摘要: 根据CaO-SiO2-Al2O3-MgO-FeO-Na2O-K2O多元体系的液相线温度和黏度的计算结果,以高炉渣和粉煤灰为原料,用喷吹法转型制备了矿渣纤维。热力学计算结果表明,混合熔体制备矿渣纤维是可行的。经过1450℃时的喷吹实验,高炉渣比例为80%~60%时获得了细长、均匀的棉絮状高质量矿物棉纤维。系统研究了高炉渣配比、喷吹温度、喷吹压力等因素对纤维直径的影响。1450℃时,当高炉渣比例从20%增加至60%时,纤维平均直径从18.08 μm降低至6.03 μm;当高炉渣比例从60%增加到80%时,纤维平均直径为5~7 μm,单纤维平均拉伸强度约为1085 MPa;但是当高炉渣比例>80%时,喷吹产品以玻璃球为主。喷吹温度越高,喷吹压力越大,获得的纤维直径越小。从实际生产的角度出发,控制高炉渣比例为60%~80%,喷吹温度控制在1400~1500℃可以获得高质量的矿物棉纤维。Abstract: In this paper, On the basis of calculating the liquidus temperatures and viscosities of the slag system CaO-SiO2-Al2O3-MgO-FeO-Na2O-K2O, slag fiber was successfully prepared from blast furnace slag and coal ash by the high-speed air-injection method. The effect of factors such as mass ratio of blast furnace slag to coal ash (slag/coal), air-injection temperature and pressure was investigated in detail. While the air-injection experiment was carried out at 1450 ℃, the slag/coal was increased from 20% to 60%, the diameter of the slag fibers was subsequently decreased from 18.08 μm to 6.03 μm. the slag/coal was increased from 60% to 80%, the average fiber diameter was between 5 and 7 μm and the single fiber average tensile strength was about 1085 MPa. However, the glass beads, otherwise fibers, have been prepared if further increased the slag/coal. Hence, high quality mineral wool fibers could be obtained by controlling the addition ratio of the blast furnace slag between 60% and 80%, and the air-injection temperature between 1400 and 1500 ℃.
-
Key words:
- blast furnace slag /
- fly ash /
- slag fiber /
- viscosity /
- fiber diameter
-
杨铧.冲天炉矿棉面临的挑战及其对策探讨[J].新型建筑材料,1993(9):10-13. 杨铧.高效利用高炉熔渣显热的一步法矿棉生产技术[J].新型建筑材料,2003(3):54-55. 杨铧.用高炉渣热装熔炼矿物棉可能性探讨[J].新型建筑材料,1995:26-29. 戴晓天,齐渊洪,张春霞, 等.高炉渣急冷干式粒化处理工艺分析[J].钢铁研究学报,2007,19(5):14-19. 杨铧.高炉熔渣显热的高效利用:新一步法矿棉技术获得成功[J].节能与环保,2003(2):34-35. 杨铧.高炉熔渣显热的利用:一步法矿棉技术[J].保温材料与节能技术,2002(6):17-19. 用酸性岩石-石英闪长玢岩在冲天炉中溶炼制取岩棉的研究报告[J]. 保温材料与节能技术, 1990(6):2-9. 杜培培,龙跃,李智慧, 等.熔渣酸度系数对矿渣棉性能的影响[J].过程工程学报,2015,15(3):518-523. 张玉柱,刘卫星,张伟, 等.改性高炉渣作为矿渣棉原料的实验研究[J].功能材料,2012,43(增刊1):59-62,66. 孙鹤群,李军,苍大强, 等.利用液态高炉渣制备矿渣棉的调质研究[J].冶金能源,2016,35(2):40-45. 姚建新,边妙莲.粉煤灰对矿渣棉用调质高炉渣析晶性能的影响[J].科学技术与工程,2019,19(36):388-393. 李军,张玲玲,赵贵州, 等.高炉熔渣调质制备高酸度系数矿物棉纤维的研究[J].冶金能源,2019,38(3):41-45. 张良进,龙跃,李智慧, 等.喷吹工艺参数对矿渣棉质量的影响[J].材料与冶金学报,2016,15(1):20-24,32. 唐续龙,张梅,郭敏,等. 基于熔渣结构的多元渣系黏度模型[J]. 工程科学学报, 2020,42(9):1149-1156. 彭苏宁, 刘庆云. 粉煤灰纤维棉及其制品的开发, 粉煤灰综合利用, 1999,13(1):44-47. MILITKY J, KOVACIC V. Ultimate mechanical properties of basalt filaments[J]. Text Research Journal, 1996, 66:225-229. 期刊类型引用(20)
1. 韩玉,郑忠陆,陈贤伟,李霞,郭雨昂,公维洁. 三亚河营养盐时空分布及富营养化研究. 环境化学. 2024(02): 524-535 . 百度学术
2. 张艳军. 秦皇岛市主要入海河流污染物浓度及入海通量分析. 中国资源综合利用. 2024(03): 153-155 . 百度学术
3. 顾永钢,于磊,张书函,孟庆义. 农村典型河道劣Ⅴ类水体治理熵增抑制效果评估. 环境工程. 2024(02): 128-134 . 本站查看
4. 谭杰,樊娟,肖金,李紫嫣,周国治,龙睿. 湘江流域(湖南段)水质时空分布特征及污染源解析. 四川环境. 2024(03): 29-35 . 百度学术
5. 毛德华,周滢,周懿琳. 1990~2016年湘江流域水质时空变化及驱动因素分析. 环境科学. 2024(07): 3953-3964 . 百度学术
6. 赵宏烨,杜银龙,廖胜利,李灵慧,杨力鹏,史晓珑. 黄河呼和浩特段水环境质量时空变化分析. 中国环境监测. 2023(01): 117-127 . 百度学术
7. 吴佳玲,毛德华. 湘江流域水体重金属污染及健康风险评价. 人民珠江. 2023(03): 94-103 . 百度学术
8. 欧玉婵,申健,陈锐明,李盟军,李冬娴,林挺锐,王荣辉,王思源,艾绍英. 广东淡水河下游流域水质时空变化特征. 广东农业科学. 2023(03): 69-77 . 百度学术
9. 曹艳敏,安宏雷,韩帅. 湘江流域水环境评价模型及驱动因子识别. 长江科学院院报. 2023(10): 51-58 . 百度学术
10. 张名豪,范围,刘建辉,敖亮. 成渝双城经济圈流域污染源解析与水质贡献研究. 环境生态学. 2023(10): 22-28+36 . 百度学术
11. 张富康,冯民权. 基于熵权综合污染指数法的汾河中游水质分析. 人民黄河. 2022(05): 109-114+120 . 百度学术
12. 袁宇,谭璐,舒倩,陈丹丹,杨海君. 集中式饮用水源地水环境质量变化及健康风险评估——以湘潭市某水厂为例. 环境保护科学. 2022(03): 132-139 . 百度学术
13. 徐大建,张建国,王佩,秦溱,熊钢,王晓清. 湘江浮游植物的生态特征及其与环境因子的相关性. 湖南农业大学学报(自然科学版). 2022(05): 594-600 . 百度学术
14. 吴岳玲,李世龙,邱小琮,杨永宇,雷兴碧. 清水河流域水质综合分析与评价. 环境监测管理与技术. 2021(02): 40-45 . 百度学术
15. 李尧,刘建卫,秦国帅,田晶. 浑太流域水质演变特征及污染源解析. 中国农村水利水电. 2021(08): 14-17+22 . 百度学术
16. 万自学,杨海君,张正云,周耀明. 长沙市某集中式饮用水水源地周边土壤重金属污染特征和风险评价. 中国环境监测. 2021(04): 118-127 . 百度学术
17. 陶亚,程亮,赵喜亮,王梓赫. 基于控制单元的流域水环境问题诊断方法研究. 华北水利水电大学学报(自然科学版). 2020(02): 12-17 . 百度学术
18. 黄华. 基于模糊综合分析法对县城水质的综合评价研究. 环境科学与管理. 2020(05): 173-178 . 百度学术
19. 李林芝,陈浒,王存璐,陈静,张红梅,杨乙未,郭城. 贵州疣螈栖息地水质评价. 生态学杂志. 2020(08): 2636-2645 . 百度学术
20. 李苗,严思睿,刘强,张军龙,袁晓敏. 白洋淀流域径流过程对极端气象干旱的响应分析. 环境工程. 2020(10): 14-20 . 本站查看
其他类型引用(18)
-

计量
- 文章访问数: 211
- HTML全文浏览量: 36
- PDF下载量: 6
- 被引次数: 38