RESEARCH PROGRESS OF BIOSORPTION REMEDIATION TECHNOLOGIES FOR CHROMIUM CONTAMINATED SITES
-
摘要: 工业废水、废渣中铬的存在对环境和人体有着潜在危害。生物吸附修复技术因为其技术上的可行性、经济性以及对环境影响较小的特点,成为从污染场地中去除有毒金属最具前景的技术之一。介绍了铬污染来源、铬的主要存在形式及其毒性,同时对铬吸附机制进行了分类讨论;分析了细菌、真菌、藻类、植物以及其他改性材料对铬的生物吸附特性,分别阐释了其吸附机理及主要影响因素;提出了生物吸附机理的研究、生物吸附参数的优化、生物吸附剂的化学改性是实现生物吸附修复技术规模化应用的关键。Abstract: The presence of chromium in industrial wastes is a potential hazard to the environment and humans. Bioadsorption remediation technology has become one of the most promising technologies for removing toxic metals from contaminated sites for its technical feasibility, low cost and low environmental impact. This review introduced the source of chromium contamination, the main species of interest and their toxicity, and discussed the classification of chromium adsorption mechanism. The biosorption characteristics of chromium by bacteria, fungi, algae, plants and other modified materials were discussed, and their adsorption mechanism and main influencing factors were explained respectively. It was proposed that the research of biosorption mechanism, the optimization of biosorption parameters, and the chemical modification of biosorbents were the key points to realize the large-scale application of biosorption remediation technology.
-
Key words:
- chromium contamination /
- biomaterial /
- biosorption /
- bioremediation
-
SARIN V, SARVINDER SINGH T, PANT K K. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark[J]. Bioresource Technology, 2006,97(16):1986-1993. LILLI M A, MORAETIS D, NIKOLAIDIS N P, et al. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin[J]. Journal of Hazardous Materials, 2015,281:12-19. 生态环境部,国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618-2018[S]. 北京:国家标准出版社,2019. 中华人民共和国环境与生态部. 2014中国环境状况公报.[2015-05-29]. http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201605/P020160526564730573906.pdf. LANDROT G, TAPPERO R, WEBB S M, et al. Arsenic and chromium speciation in an urban contaminated soil[J]. Chemosphere, 2012,88(10):1196-1201. CARLOS E BARRERA-DÍAZ, VIOLETA LUGO-LUGO,BRYAN BILYEU. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2012, 223-224:1-12. 张双庆.铬价态分析方法的研究进展[J]. 卫生研究,2019,48(6):1037-1040. REALE L, FERRANTI F, MANTILACCI S, et al. Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium[J]. Chemosphere, 2016,145:98-105. ASHRAF A, BIBI I, NIAZI N K, et al. Chromium (Ⅵ) sorption efficiency of acid-activated banana peel over organomontmorillonite in aqueous solutions[J]. International Journal of Phytoremediation, 2017,19(7):605-613. COSTA M. Potential hazards of hexavalent chromate in our drinking water[J]. Toxicology and Applied Pharmacology, 2003,188(1):1-5. MOHANTY K, JHA M, MEIKAP B C, et al. Removal of chromium(Ⅵ) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride[J]. Chemical Engineering Science, 2005,60(11):3049-3059. ARSLAN P, BELTRAME M, TOMASI A. Intracellular chromium reduction[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1987,931(1):10-15. KADⅡSKA M, XIANG Q, MASON R H. In vivo Free Radical Generation by Chromium(Ⅵ):an Electron Spin Resonance Spin-trapping Investigation[J]. Chemical Research in Toxicology, 1994,7(6):800-805. LIU K J, JIANG J J, SHI X L, et al. Low-frequency EPR study of Chromium(V) formation from chromium(Ⅵ) in living plants[J]. Biochemical and Biophysical Research Communications, 1995,206(3):829-834. PECHOVA A, PAVLATA L. Chromium as an essential nutrient:a review[J]. Veterinarni Medicina, 2007,52(1):1-18. ROUNDHILL D, KOCH H. Methods and techniques for the selective extraction and recovery of oxoanions[J]. Chemical Society Reviews, 2002,31(1):60-67. YUN Y S, PARK D, PARK J M, et al. Biosorption of trivalent chromium on the brown sea weed biomass[J]. Environmental Science and Technology, 2001,35(21):4353-4358. PINO G H, MESQUITA L M S, TOREM M L, et al. Biosorption of cadmium by green coconut shell powder[J]. Minerals Engineering, 2006,19(5):380-387. SHRUTI S, PUNITA U, KHOS M A. Overview of wastewater treatment methods with special focus on iopolymer chitin-chitosan[J]. International Journal of Biological Macromolecules, 2019,121:1086-1100. OFOMAJA A E, HO Y S. Effect of pH on cadmium biosorption by coconut copra meal[J]. Journal of Hazardous Materials, 2007,139(2):356-362. PARVATHI K, NAGENDRA R, NARESHKUMAR R. Lead biosorption on waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industries[J]. Electronic Journal of Biotechnology, 2007,10:1-14. ABBAS M, NADEEM R, ZAFAR M N. Biosorption of chromium (Ⅲ) and chromium (Ⅵ) by untreated and pretreated Cassia fistula biomass from aqueous solutions[J]. Water Air Soil Pollution, 2008, 191:139-148. ZUBAIR A, BHATTI H N, HANIF M A. Kinetic and equilibrium modeling for Cr(Ⅲ) and Cr(Ⅵ) removal from aqueous solutions by Citrus reticulate waste biomass[J]. Water Air Soil Pollution, 2008, 191:305-318. LI J P, LIN Q Y, ZHANG X H. Kinetic parameters and mechanisms of the batch biosorption of Cr(Ⅵ) and Cr(Ⅲ) onto Leersia hexandra Swartz biomass[J]. Colloid and Interface Science, 2009, 333:71-77. HASAN S H, SINGH K K, PRAKASH O, et al. Removal of Cr(Ⅵ) from aqueous solutions using agricultural waste ‘maize bran’[J]. Journal of Hazardous Materials, 2008,152(1):356-365. PARK D, PARK J M, YUN Y S. Mechanisms of the removal of hexavalentchromium by biomaterials or biomaterial-based activated carbons[J]. Journal of Hazardous Materials, 2006,137(2):1254-1257. CHOJNACKA K, CHOJNACKI A, GORECKA H. Biosorption of Cr3+,Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.:kinetics, equilibrium and themechanism of the processc[J]. Chemosphere, 2005,59(1):75-84. VEGLIO F, BEOLCINI F. Removal of metals by biosorption:a review[J]. Hydrometallurgy, 1997,44(3):301-316. FOUREST E, ROUX J C. Heavy metal biosorption by fungal mycelial by products:mechanisms and influence of pH[J]. Applied Microbiology Biotechnology, 1992,37(3):399-403. VOLESKY B. Detoxification of metal-bearing effluents:biosorption for the next century[C]//13th International Biohydrometallurgy Symposium (IBS'99), MADRID, SPAIN, 2001. VELEZ P A, TALANO M A, PAISIO C E, et al. Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation[J]. Environmental Technology, 2017,38(17):2164-2172. FRUREST E, VOLESKY B. Alginate properties and heavy metal biosorption by marine algae[J]. Applied Biochemistry Biotechnology, 1997,67(3):215-226. KUYUCAK N, VOLESKY B. Biosorbents for recovery of metals from industrial solutions[J]. Biotechnology Letters, 1988,10(2):137-142. GADD G M. Heavy metal accumulation by bacteria and other micro organisms[J]. Experientia, 1990,46(8):834-840. RENITTA J, PAMELA J, ANOOP K Y, et al. Biosorption and biotransformation of hexavalent chromium[Cr(Ⅵ)]:A comprehensive review[J]. Chemosphere, 2018,207:255-266. SRINATH V T, RAMTEKE P W, GARG S K. Chromium (Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria[J]. Chemosphere, 2002,48(4):427-435. KAPOOR A, VIRARAGHAVAN T. Biosorption of heavy-metal on Aspergillus niger:effect of pretreatment[J]. Bioresources Technology, 1998,63(2):109-113. FEHRMANN C, POHL P. Cadmium adsorption by the non-living biomass of microalgae grown in axenic mass culture[J]. Journal of Applied Phycology, 1993,5(6):555-562. SRINATH T, VERMA T, RAMTEKE P W, et al. Chromium(Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria[J]. Chemosphere, 2002,48(4):427-435. GABR R M, GAD-ELRAB S M F, ABSKHARON R N N, et al. Biosorption of hexavalent chromium using biofifilm of E. coli supported on granulated activated carbon[J]. World Journal of Microbiology and Biotechnology, 2009,25(10):1695-1703. OZDEMIR G, OZTURK T, CEYHAN N, et al. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge[J]. Bioresource Technology, 2003,90(1):71-74. ANJANA K, KAUSHIK A, KIRAN B, et al. Biosorption of Cr(Ⅵ) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil[J]. Journal of Hazardous Materials, 2007,148(1/2):383-386. ARAVINDHAN R, FATHIMA A, SELVAMURUGAN M, et al. Adsorption, desorption, and kinetic study on Cr(Ⅲ) removalfrom aqueous solution using Bacillus subtilis biomass[J]. Clean Technologies Environmental Policy, 2012,14(4):727-735. SUNDAR K, AMITAVA M, MOHAMMED S, et al. Cr (Ⅲ) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin[J]. Journal of Hazardous Materials, 2011,187(1/3):553-561. FATHIMA A, JONNALAGADDA R R, BALACHANDRAN U N. Trivalent chromium removal from tannery effluent using kaolin-supported bacterial biofilm of Bacillus spisolated from chromiumpolluted soil[J]. Journal of Chemical Technology Biotechnology, 2012,87(2):271-279. BARTNICKI G S. Cell Wall Chemistry Morphogenesis and Taxonomy of Fungi[J]. Annual Review of Microbiology, 1968,22:87-108. GADD G M, WHITE C. Removal of thorium from simulated acid processsteams by fungal biomass[J]. Biotechnology Bioengineering, 1989,33(5):592-597. TEWARI N, VASUDEVAN P, GUHA B K. Study on biosorption of Cr(Ⅵ) by Mucor hiemalis[J]. Biochemical Engineering Journal, 2005,23(2):185-192. AKSU Z, BALIBEK E. Chromium(Ⅵ) biosorption by dried Rhizopus arrhizus:Effect of salt (NaCl) concentration on equilibrium and kinetic parameters[J]. Journal of Hazardous Materials, 2007,145(1/2):210-220. KHAMBHATY Y, MODY K, BASHA S, et al. Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger[J]. Chemical Engineering Journal, 2009,145(3):489-495. ALICE A M E, SAMUEL M S, CHIDAMBARAM R. Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site:box-Behnkenoptimization, equilibrium, kinetics and thermodynamic studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015,49:156-164. SANGHI R, SANKARARAMAKRISHNAN N, DAVE B C. Fungal bioremediation of chromates:Conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions[J]. Journal of Hazardous Materials, 2009,169(1/3):1074-1080. ARICA M Y, GULAY BAYRAMOGLU G. Cr(Ⅵ) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju:preparation and kinetic characterization[J]. Colloids and Surfaces A-Physicochemical Engineering Aspects, 2005,253(1/2/3):203-211. HANIF M A, BHATTI H N, BHATTI I A. Biosorption of Cr(Ⅲ) and Cr(Ⅵ) by Newly Isolated White Rot Fungi:Batch and Column Studies[J]. Asian Journal of Chemistry, 2011,23(8):3375-3383. SHOAIB A, ASLAM N, ATHAR M M. Removal of Cr(Ⅲ) through Bread Mold Fungus[J]. Polish Journal of Environmental Studies, 2013,22(4):1171-1176. DAVIS T A, VOLESKY B, MUCCI A. A review of the biochemistry of heavy metalbiosorption by brown algae[J]. Water Research, 2003,37(18):4311-4330. GUPTA V K, RASTOGI A. Biosorption of hexavalent chromium by raw and acid-treated green algaOedogonium hateifrom aqueous solutions[J]. Journal of Hazardous Materials, 2009,163(1):396-402. ARICA M Y, TUZUN I, YALCIN E, et al. Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(Ⅵ) ions[J]. Process Biochemistry, 2005,40(7):2351-2358. DENG L P, ZHANG Y, QIN J, et al. Biosorption of Cr(Ⅵ) from aqueous solutions by nonlivinggreen algae Cladophora albida[J]. Minerals Engineering, 2009,22(4):372-377. ARAVINDHAN R, MADHAN B, RAO J R, et al. Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed[J]. Journal of Chemical Technology Biotechnology, 2004,79(11):1251-1258. LI Z Y, GUO S Y, LIN LI. Study on the process, thermodynamical isotherm and mechanism of Cr(Ⅲ) uptake by Spirulina platensis[J]. Journal of Food Engineering, 2006,75(1):129-136. ONYANCHA D, MAVURA W, NGILA J C, et al. Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum[J]. Journal of Hazardous Materials, 2008,158(2/3):605-614. SUD D, MAHAJAN G, KAUR M P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions:a review[J]. Bioresource Technology, 2008,99(14):6017-6027. SAHA B, ORVIG C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents[J]. Coordination Chemistry Reviews, 2010,254(23/24):2959-2972. DUPONT L, GUILLON E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran[J]. Environmental Science Technology, 2003,37(18):4235-4241. PARK D, LIM S R, YUN Y S, et al. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction[J]. Chemosphere, 2007,70(2):298-305. SUKSABYE P, THIRAVETYAN P, NAKBANPOTE W, et al. Chromium removal from electroplating wastewater by coir pith[J]. Journal of Hazardous Materials, 2007,141(3):637-644. VAGHETTI J C P, LIMAA E C, ROYER B, et al. Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr(Ⅵ) from aqueous solution-Kinetics and equilibrium study[J]. Biochemical Engineering Journal, 2008,42(1):67-76. CHOJNACKA K. Biosorption of Cr(Ⅲ) ions by wheat straw and grass:a systematic characterization of new biosorbents[J]. Polish Journal of Environmental Studies, 2006,15(6):845-852. FLOGEAC K, GUILLON E, MARCEAUB E, et al. Speciation of chromium on a straw lignin:adsorption isotherm EPR and XAS studies[J]. New Journal of Chemistry, 2003,27(4):714-720. BINGOL A, UCUN H, BAYHAN Y K, et al. Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast[J]. Bioresource Technology, 2004,94(3):245-249. BINGOL A, ASLAN A, CAKICI A. Biosorption of chromate anions from aqueous solution by a cationicsurfactant-modified lichen (Cladonia rangiformis(L.))[J]. Journal of Hazardous Materials, 2009,161(2/3):747-752. KORICH A L, CLARKE K M, WALLACE D, et al. Chemical modification of a lignin model polymer via Arylboronate Ester formation under mild reaction conditions[J]. Macromolecules, 2009,42(16):5906-5908. JASIUKAITYTÈ E, KUNAVER M, CRESTINI C. Lignin structural changes during liquefaction in acidified ethylene glycol[J]. Journal of Wood Chemistry Technology, 2012,32(4):342-360. WANG B, SUN Y C, SUN R C. Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater:a review[J]. Journal of Leather Science and Engineering, 2019,1(1) 1-25. YAO J, XU H, WANG J, et al. Removal o f Cr(Ⅲ), Ni(Ⅱ) and Cu(Ⅱ) by poly(γ-glutamic acid) from Bacillus subtilis NX-2[J]. Journal of Biomaterials Science-polymer Edition, 2007,18(2):193-204. NGAH W S W, KAMARI A, FATINATHAN S, et al. Adsorption of chromium from aqueous solution using chitosan beads[J]. Adsorption, 2006,12(4):249-257. SARGIN I, ARSLAN G, KAYA M. Microfungal spores(Ustilago maydis and U.digitariae) immobilised chitosan microcapsules for heavy metal removal[J]. Carbohydrate Polymers, 2016,138:201-209. LU Z F, WANG F M, LI J Y, et al. Adsorption characteristics of bio-adsorbent on chromium(Ⅲ) in industrial wastewater[J]. Water Science Technology, 2015,72(7):1051-1061.
点击查看大图
计量
- 文章访问数: 465
- HTML全文浏览量: 40
- PDF下载量: 11
- 被引次数: 0