PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR
-
摘要: 通过室内模拟试验,研究了核桃壳生物炭(BC400、BC500、BC600)对人工Cd污染土壤(20 mg/kg)pH、Cd赋存形态分布的影响,并探究可能的修复机理。结果显示:经56 d修复后,与空白对照组相比,10%添加量的核桃壳生物炭BC400、BC500、BC600分别使土壤pH升高了1.07、1.31、1.38,弱酸可提取态Cd含量减少了17.02%、20.20%、24.53%,可还原态Cd含量减少了8.9%、19.1%、38.2%,可氧化态Cd含量增加了44.83%、78.45%、100%,残渣态Cd含量增加了66.03%、71.43%、89.21%。同时,土壤pH与土壤中弱酸可提取态Cd含量呈显著负相关(P<0.01)。综上,核桃壳生物炭能够对Cd污染土壤起到钝化修复作用。Abstract: The effects of walnut shell biochar (BC400, BC500, BC600) on pH and Cd morphology distribution in artificial Cd-contaminated soil (20 mg/kg) were studied through laboratory simulation experiments, and possible repair mechanisms were investigated. The results showed that after 56 days of remediation, compared with the blank control group, with 10% dosage of walnut shell biochar BC400, BC500 and BC600, the soil pH increased by 1.07, 1.31 and 1.38, the content of extractable Cd decreased by 17.02%, 20.20% and 24.53%, the reducible Cd content decreased by 8.9%, 19.1% and 38.2%, the oxidizable Cd content increased by 44.83%, 78.45% and 100%, and the residual Cd content increased by 66.03%, 71.43%, 89.21%. At the same time, there was a significant negative correlation between soil pH and soil extractable Cd content (P<0.01). Walnut shell biochar was proved to have the performance in passivating and repairing Cd-contaminated soil.
-
Key words:
- walnut shell biochar /
- soil heavy metals /
- Cd /
- repair
-
鲁秀国, 武今巾, 过依婷. 生物炭修复重金属污染土壤的研究进展[J]. 应用化工, 2019, 48(5):1172-1177. 环境保护部, 国土资源部.全国土壤污染状况调查公报(2014年4月17日)[J].环境教育,2014(6):8-10. PINTO A P, MOTA A M, DE VARENNES A, et al. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants[J]. Science of The Total Environment, 2004, 326(1/2/3):239-247. CUI L Q, NOERPEL M R, SCHECKEL K G, et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International, 2019, 126:69-75. RAJENDRAN M, SHI L Z, WU C, et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system[J]. Chemosphere, 2019, 222:314-322. TANG X, LI Q, WU M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181:646-662. CANG L, ZHOU D M, WANG Q Y, et al. Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities[J]. Electrochimica Acta, 2012, 86:41-48. XU Y Z, FANG Z Q, TSANG E P. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles[J]. Environmental Science and Pollution Research, 2016, 23(19):19164-19172. HAN X Q, XIAO X Y, GUO Z H, et al. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management[J]. Ecotoxicology and Environmental Safety, 2018, 159:38-45. SHAHEEN S M, RINKLEBE J. Impact of emerging and low cost alternative amendments on the (im) mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil[J]. Ecological Engineering, 2015, 74:319-326. HE H D, TAM N F Y, YAO A J, et al. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag[J]. Chemosphere, 2017, 189:247-254. GUO F Y, DING C F, ZHOU Z G, et al. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation[J]. Ecotoxicology and Environmental Safety, 2018, 148:303-310. LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems-a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2):403-427. ZENG G M, WU H P, LIANG J, et al. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil[J]. RSC Advances, 2015, 5(44):34541-34548. LIU L, WANG Y F, YAN X W, et al. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture[J]. Agriculture, Ecosystems & Environment, 2017, 237:16-23. AHMAD M, OK Y S, RAJAPAKSHA A U, et al. Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars:chemical, microbial and spectroscopic assessments[J]. Journal of Hazardous Materials, 2016, 301:179-186. CUI L Q, PAN G X, LI L Q, et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil:a five-year field experiment[J]. Ecological Engineering, 2016, 93:1-8. HOUBEN D, EVRARD L, SONNET P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.)[J]. Biomass and Bioenergy, 2013, 57:196-204. IPPOLITO J A, BERRY C M, STRAWN D G, et al. Biochars reduce mine land soil bioavailable metals[J]. Journal of Environmental Quality, 2017, 46(2):411-419. WU S H, HE H J, INTHAPANYA X, et al. Role of biochar on composting of organic wastes and remediation of contaminated soils:a review[J]. Environmental Science and Pollution Research, 2017, 24(20):16560-16577. 鲍士旦. 土壤农化分析[M].北京:中国农业出版社, 2000. QUEVAUVILLER P, RAURET G, LÓPEZ-SÁNCHEZ J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. Science of The Total Environment, 1997, 205(2/3):223-234. 计海洋, 汪玉瑛, 吕豪豪, 等. 不同炭化温度制备的蚕丝被废弃物生物炭对重金属Cd2+的吸附性能[J]. 应用生态学报, 2018, 29(4):1328-1338. 安梅, 董丽, 张磊, 等. 不同种类生物炭对土壤重金属镉铅形态分布的影响[J]. 农业环境科学学报, 2018, 37(5):892-898. HOUBEN D, EVRARAD L, SONNET P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11):1450-1457. YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3):3488-3497. CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14):5222-5228. 陈昱, 钱云, 梁媛, 等. 生物炭对Cd污染土壤的修复效果与机理[J]. 环境工程学报, 2017, 11(4):2528-2534. HAO J W, GONG M, WU Y H, et al. Alkali recovery using PVA/SiO2 cation exchange membranes with different-COOH contents[J]. Journal of Hazardous Materials, 2013, 244/245:348-356. NAGARALE R K, GOHIL G S, SHAHI V K, et al. Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups[J]. Colloids and surfaces A:Physicochemical and Engineering Aspects, 2004, 251(1/2/3):133-140. ANIRUDHAN T S, RADHAKRISHNAN P G. Kinetics, thermodynamics and surface heterogeneity assessment of uranium (Ⅵ) adsorption onto cation exchange resin derived from a lignocellulosic residue[J]. Applied Surface Science, 2009, 255(9):4983-4991. 胡雅君. 利用麦芽根制备的生物炭修复汞污染土壤研究[D].杭州:浙江大学, 2018. 刘瑞凡. 小麦秸秆生物炭修复污染土壤重金属Pb、Cd的研究[D]. 西安:西安科技大学, 2018. 刘书四. 改性生物炭对水稻土壤中镉和砷生物有效性以及根际微生态的影响[D]. 广州:华南理工大学, 2017. XIAO R, SUN X N, WANG J, et al. Characteristics and phytotoxicity assay of biochars derived from a Zn-rich antibiotic residue[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113:575-583. VITHANAGE M, LEE S S, OK Y S. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014, 99:19-33. 雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 2007, 16(5):1551-1556. TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125:70-85. 肖然. 生物炭的制备及其对养分保留和重金属钝化的潜力研究[D]. 杨凌:西北农林科技大学, 2017. MARTINEZ C E, MOTTO H L. Solubility of lead, zinc and copper added to mineral soils[J]. Environmental Pollution, 2000, 107(1):153-158. 高瑞丽, 唐茂, 付庆灵, 等. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响[J]. 环境科学,2017(1):363-369. 刘晶晶, 杨兴, 陆扣萍, 等. 生物质炭对土壤重金属形态转化及其有效性的影响[J]. 环境科学学报, 2015, 35(11):272-280. CUI H B, ZHOU J, ZHAO Q G, et al. Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro-and nanohydroxyapatite[J]. Journal of Soils and Sediments, 2013, 13(4):742-752. 黄代宽, 李心清, 董泽琴, 等. 生物炭的土壤环境效应及其重金属修复应用的研究进展[J]. 贵州农业科学, 2014(11):159-165. GROSSMAN J M, O'NEILL B E, TSAI S M, et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J]. Microbial Ecology, 2010, 60(1):192-205. LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota:a review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836.
点击查看大图
计量
- 文章访问数: 188
- HTML全文浏览量: 41
- PDF下载量: 5
- 被引次数: 0