CONTROL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD DISTRIBUTION IN ROASTER OF THE MIXED ACID REGENERATION PROCESS
-
摘要: 喷雾焙烧法作为不锈钢混酸废液全酸回收的最先进工艺方法,不仅可以实现废液中游离酸和化合酸的回收,还可以实现金属氧化物的回收。若该工艺中焙烧炉(核心设备)内流场和温度场分布混乱,易加剧金属氧化物粉末挂壁,进而导致废酸不能完全反应而腐蚀炉体,影响生产运行。采用模拟软件Fluent对不同空燃比、燃烧气初始流速等条件下焙烧炉内流场和温度场的分布进行模拟,以获得最优的流场和温度场,最大程度消除金属氧化物粉末的挂壁现象,确保设备的长时间稳定运行。结果表明:在燃气介质为煤气,燃烧气初始流速为20 m/s,空燃比为1.7∶1模拟时可获得最佳的流场和温度场分布,在该最佳条件下焙烧炉内温度梯度的实际测量与模拟结果基本吻合,也进一步验证了模型建立的正确性。在改变燃气介质为天然气的条件下,在燃烧气初始流速为20 m/s,空燃比为13∶1时也可模拟获得最佳的流场和温度场分布。该模型对今后酸再生工艺的开发设计和运行管理具有良好的指导作用。Abstract: As the most advanced technological method for recovering total acid from stainless steel mixed acid waste, spraying and roasting can not only recover free acid and compound acid, but also recover metal oxide. In this process, the flow field and temperature field distribution chaos in the roaster will intensify metal oxide powder wall-hanging, and eventually lead to that the waste acid can not be fully reacted and corrode the roastor. In this study, simulation software Fluent was used to simulate the distribution of the flow field and temperature field in the roastor under different conditions such as air-fuel ratio and initial velocity of the post combustion gas, so as to obtain the optimal flow field and temperature field, eliminate the wall-hanging phenomenon of metal oxide powder to the maximum extent, and ensure the stable operation of the equipment for a long time. The results showed that the optimal flow field and temperature field distribution could be simulated when the gas medium was coal gas, the initial flow velocity of the post combustion gas was 20 m/s, and the air-fuel ratio was 1.7∶1. The actual measurement of the temperature gradient in the roaster under this optimal condition was basically consistent with the simulation results, which further verified the correctness of the model establishment. Under the condition of changing the gas medium to natural gas, the optimal flow field and temperature field distribution could also be simulated when the initial velocity of the post combustion gas was 20 m/s and the air-fuel ratio was 13∶1. The model could be used to guide the development, design and operation management of acid regeneration process in the future.
-
Key words:
- spray roasting /
- roaster /
- wall-hanging /
- corrosion /
- flow field
-
李秋菊,张景,刘旭隆,等. 从不锈钢酸洗废液中回收金属的试验研究[J]. 中国冶金,2015,39(8):39-43. KLADNIG W F. New development of acid regeneration in steel pickling plants[J]. Journal of Iron and Steel Research International, 2008, 15(4):1-6. 王世伟,季志雷. 不锈钢冷轧混酸(HF+HNO3)再生技术[J]. 上海金属,2008,30(8):115-117. 王清洁. 不锈钢酸洗废混酸再生工艺技术集成与创新[J]. 山西冶金,2013,40(10):20-22. 李婵娟,张鹏,李辉,等. 混酸再生系统对环境的影响[J]. 宝钢技术,2014,31(2):76-80. 徐向东,蔡恒君,杨伟. 鞍钢联众不锈钢混酸再生技术改进[J]. 鞍钢技术,2017,53(6):58-61. 赵希坤. 酸再生焙烧炉温度控制系统改造[J]. 设备管理与维修,2010,30(7):50-51. 高祥锋,朱英韬,李峰,等. 酸再生焙烧炉炉温控制系统的优化[J]. 自动化与仪表,2015,30(7):49-53. 王海林,张振林,杨绿. 废酸焙烧再生炉内流场的数值模拟[J]. 昆明理工大学学报(理工版),2009,34(3):12-16. 李勇,刘志友,安亦然. 介绍计算流体力学通用软件-Fluent[J]. 水动力学研究与进展,2001,16(2):254-258. 周力行. 湍流两相流动与燃烧的数值模拟[M]. 北京:清华大学出版社,1991. 范维澄,万跃鹏. 流动及燃烧的模型与计算[M]. 合肥:中国科学技术大学出版社,1992. 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社,2004. 郑全军,舫王,肖显斌,等. 新型有机废液焚烧炉炉内燃烧过程的数值模拟[J]. 环境工程,2014,32(增刊1):210-213. 王瑞金,张凯,王刚. Fluent技术基础与应用实例[M]. 北京:清华大学出版社,2007. PETERS N. Turbulent Combustion[M]. Cambridge:Cambridge University Press, 2000. 周远翔. 大型流态化焙烧炉温度场和应力场的仿真分析[J]. 有色设备,2012,25(3):19-22. 张林进,陈小娟. 高温竖窑燃烧状况的CFD模拟[J]. 工业炉,2015,37(2):7-10.
点击查看大图
计量
- 文章访问数: 177
- HTML全文浏览量: 12
- PDF下载量: 3
- 被引次数: 0