RESEARCH AND ECONOMIC ANALYSIS OF MAINSTREAM ENERGY TECHNOLOGIES FOR STRAW
-
摘要: 秸秆生物质作为1种可替代化石燃料的清洁能源,对环境保护和能源结构转型意义重大。我国农作物产量丰富,在秸秆的综合利用方面有较大潜力。就整个秸秆能源化产业而言,我国正处于有序推进阶段,但国内核心技术和设备水平与国际先进水平之间存在差距,产业效益仍不理想,企业对财政补贴有较强的依赖性。在充分认识我国秸秆利用现状的基础上,针对秸秆乙醇技术、秸秆沼气技术、秸秆热解技术和秸秆固化成型技术,探讨了国内外秸秆能源化技术和应用进展,追踪了解除发酵抑制、优化厌氧消化性能、开发热解炭降解潜力以及激活成型燃料黏结性能等技术热点问题。基于经济性分析提出了全组分利用、气肥联产模式、大宗产物梯级利用等针对能源化技术的效益提升手段,并对比了政策补贴和技术提升对企业效益的影响。最后从政策角度和新技术角度对秸秆产业发展方向提出了建议。Abstract: Straw biomass, as a clean energy alternative to fossil fuels, is of great significance to environmental protection and energy structure transformation. China has abundant crop yield and great potential in the comprehensive utilization of straw. In terms of the whole straw energy industry, China is in the stage of orderly promotion, but there is a gap between the domestic core technology and equipment level and the international advanced level, the industrial benefits are still not ideal, and enterprises have a strong dependence on government financial subsidies. For straw ethanol technology, the straw biogas technology, straw pyrolysis technology and straw curing technology, on the basis of fully understanding of the straw utilization in China, straw energy technology and the application progress at home and abroad were discussed, and the reduction of fermentation inhibiting, the optimization of anaerobic digestion performance degradation, the development of pyrolytic carbon potential, the activation of molding fuel stick performance and other technical issues were discussed. Based on the economic analysis, some means to improve the efficiency of energy technologies were put forward, such as whole-component utilization, combined production mode of gas and fertilizer, cascade utilization of bulk products, and the effects of policy subsidies and technology upgrading on the enterprise's efficiency were compared. Finally, some suggestions on the development direction of straw industry from the perspective of policy and new technology were put forward.
-
Key words:
- straw /
- energy technology /
- economic analysis
-
BP. BP Statistical Review of World Energy 2019[M]. London:BP, 2019. 林益楷. 迈向碳中和世界:化石能源的资产搁置风险[J]. 能源, 2019(12):36-39. MOMAYEZ F, KARIMI K, TAHERZADEH M J. Energy recovery from industrial crop wastes by dry anaerobic digestion:a review[J]. Industrial Crops & Products, 2019, 129:673-687. WU C Z, YIN X L, YUAN Z H, et al. The development of bioenergy technology in China[J]. Energy, 2010, 35:4445-4450. SCARLAT N, DALLEMAND J F, MONFORTI-FERRARIO F, et al. The role of biomass and bioenergy in a future bioeconomy:policies and facts[J]. Environmental Development, 2015, 15(2):3-34. 刘国华, 卓雨欣, 张涛, 等. 基于酸催化的生物质制乙醇工艺条件优化[J]. 环境工程学报,2020,14(6):1658-1667. 牛文娟. 主要农作物秸秆组成成分和能源利用潜力[D]. 北京:中国农业大学, 2015. 王长波, 平英华, 刘先才, 等. 我国秸秆资源"五化"利用研究进展[J]. 安徽农业科学, 2018, 46(7):22-26,29. 王红彦, 王飞, 孙仁华, 等. 国外农作物秸秆利用政策法规综述及其经验启示[J]. 农业工程学报, 2016, 32(16):216-222. 李洪岭, 李旭建, 宋玉杰, 等. 农业废弃物秸秆高值化综合利用研究与实践[J]. 再生资源与循环经济, 2018, 11(7):11-14. 国家发展改革委办公厅, 农业部办公厅. 关于编制"十三五"秸秆综合利用实施方案的指导意见[Z]. 2016-12-05. 中节能咨询有限公司. 《生物质能发展"十三五"规划》中期评估报告[M]. 北京:中节能咨询有限公司, 2018. 王明新, 叶倩, 王迪. 中国秸秆优质化能源开发利用特征及影响因素[J]. 资源科学, 2019, 41(10):1791-1800. 周羿廷. 中丹建业:农业循环经济秸秆产业的地上绿色能源"大油田"[J]. 中国高新科技, 2019(21):67-68. 佟毅. 纤维素乙醇产业发展现状及展望[J]. 中国粮食经济, 2019(12):47-50. JYOTI KAINTHOLA, KALAMDHAD AJAY S, VAIBHAV V. GOUD. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques[J]. Process Biochemistry, 2019, 84:81-90. WENDY MUSSOLINE, GIOVANNI ESPOSITOA, PIET LENS, et al. Enhanced methane production from rice straw co-digested with anaerobic sludge from pulp and paper mill treatment process[J]. Bioresource Technology, 2013, 148:135-143. 王岚, 赵启红, 陈洪章. 规模化纤维素乙醇的困境与出路[J]. 高科技与产业化, 2018(6):55-61. 石祖梁. 中国秸秆资源化利用现状及对策建议[J]. 世界环境, 2018(5):16-18. 吴悦. 油菜秸秆富集镉与木质纤维高效酶解产糖产醇的研究[D]. 武汉:华中农业大学, 2019. 曹拢财, 叶艳艳, 王佳琪, 等. 乙醇/水中麦秆盐酸预处理及同步糖化发酵研究[J]. 河南科技学院学报(自然科学版), 2019, 47(4):36-40. PELLERA F M, GIDARAKOS E. Microwave pretreatment of lignocellulosic agro industrial waste for methane production[J]. Chemical Engineering, 2016, 5:352-365. FENG R Z, ZAIDI A A, ZHANG K, et al. Optimization of microwave pretreatment for biogas enhancement through anaerobic digestion of microalgal biomass[J]. Chemical Engineering, 2018, 63(1):65-72. QIAN X Y, SHEN G X, WANG Z Q, et al. Enhancement of high solid anaerobic co-digestion of swine manure with rice straw pretreated by microwave and alkaline[J]. Bioresource Technology, 2019, 7:100208. SAGARIKA PANIGRAHI, BRAJESH K DUBEY. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste[J]. Renewable Energy, 2019, 143:779-797. ALMOMANI F, BHOSALE R R, KHRAISHEH M A M, et al. Enhancement of biogas production from agricultural wastes via pre-treatment with advanced oxidation processes[J]. Fuel, 2019, 253:964-974. ABRAHAM A, MATHEW A K, PARK H. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology[J]. 2020, 301:1-13. ADITIYA H B, MAHLIA T M I, CHONG W T, et al. Second generation bioethanol production:A critical review. Renewable Sustainable Energy Review, 2016, 66:631-653. QURESHI A S, ZHANG J, BAO J. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain[J]. Bioresource Technology, 2015, 189:399-404. 王夏慧. 秸秆活性物质对乙醇发酵影响机制的研究[D]. 上海:上海大学, 2019. 梁静. 木质纤维素水解液糖酸分离系统的研究[D]. 北京:北京化工大学, 2010. FARINA G E, HESTER R D. Process for separating acid-sugar mixtures using ion exclusion chromatography:USA, US5538637-A[P]. 1996-07-23. 李浔, 颜涌捷, 李庭琛, 等. 双极性膜电渗析法用于糖酸分离的研究[J]. 华东理工大学学报(自然科学版), 2004,30(4):402-405,453. KIM H M, OH C H, BAE H J. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production[J]. Bioresource Technology, 2017, 233:44-50. 崔茂金, 张瑞晓, 刘亚南, 等. 酸预处理麦秆半同步和同步糖化发酵制乙醇条件优化[J]. 中国油脂, 2018, 43(9):62-65. 路鹏. 抗水解液中抑制物的秸秆乙醇发酵菌剂构建及其功能研究[D]. 北京:中国农业大学, 2007. 吴宇, 王金华, 赵筱. GLN1基因过表达对提高酿酒酵母糠醛耐受性的研究[J]. 生物技术通报,2020,36(8):69-78. 林贝, 李健秀, 刘雪凌. 紫外诱变结合驯化提高酿酒酵母对抑制物耐受性[J]. 生物技术, 2018, 28(1):85-91. WAN C, ZHANG M M, FANG Q, et al. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc[J]. Metallomics, 2015, 7(2):322-332. PANDIYAN K, ARJUN SINGH, SURENDER SINGH. Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production[J]. Renewable Energy, 2019, 132:723-741. 李佩胜, 王宏志. 关于科学发展秸秆沼气项目的探讨[J]. 节能, 2008(7):9-10. 陈光, 吴卓夫, 张兆业. 秸秆综合利用研究动态及展望[J]. 吉林农业大学学报, 2016, 38(5):505-510. 张坚勇.农作物秸秆综合利用实用技术[M]. 南京:东南大学出版社, 2011:139. 杨茜, 鞠美庭, 李维尊. 秸秆厌氧消化产甲烷的研究进展[J]. 农业工程学报, 2016, 32(14):232-242. DAI X H, HUA Y, DAI L L, et al. Particle size reduction of rice straw enhances methane production under anaerobic digestion[J]. Bioresource Technology, 2019, 293,122043. LI Y, CHEN Y G, WU J. Enhancement of methane production in anaerobic digestion process:A review[J]. Applied Energy, 2019, 240:120-137. 王世伟, 马放, 麻微微, 等. 中低温条件下牛粪秸秆混合沼气发酵的研究[J]. 环境保护科学, 2019, 45(5):20-24. XIE S H, WICKHAM RICHARD, NGHIEM LONG D. Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes[J]. International Biodeterioration & Biodegradation, 2017, 116:191-197. WEI Y F, YUAN H R, WACHEMO AKIBER CHUFO. Impacts of modification of corn stover on the synergistic effect and microbial community structure of Co-digestion with chicken manure[J]. Energy & Fuels, 2020, 34(1):401-411. ALINE G, OSCAR F, GABRIELA F, et al. Methane production by co-digestion of poultry manure and lignocellulosic biomass:kinetic and energy assessment[J]. Bioresource Technology, 2020, 300,122588. 王艳芹, 付龙云, 杨光, 等. 农村有机生活垃圾等混合物料厌氧发酵产沼气性能[J]. 农业资源与环境学报, 2016, 35(6):1173-1179. GUADALUPE S, ELIZABETH N, AZUCENA V, et al. Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles[J]. Renewable Energy, 2020, 147:204-213. MATHU INDREN, CRISTIAN H. BIRZER, STEPHEN P. KIDD, et al. Effects of biochar parent material and microbial pre-loading in biochar-amended high-solids anaerobic digestion[J]. Bioresource Technology, 2020, 298,122457. XU H F, YUN SINING, CHEN WANG, et al. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite[J]. Bioresource Technology, 2020, 301,122753. WU X Y, TIAN Z Z, LV Z P. Effects of copper salts on performance, antibiotic resistance genes, and microbial community during thermophilic anaerobic digestion of swine manure[J]. Bioresource Technology, 2020, 300,122728. 王武娟, 杨膺白. 农业废弃物沼气干发酵技术研究进展[J]. 环境科学导刊, 2018, 37(增刊1):12-16. 张振, 谢明阳, 尹芳,等. 石竹梅与猪粪混合半干发酵产沼气试验研究[J]. 中国沼气, 2019, 37(6):31-36. 左旭. 我国农业废弃物新型能源化开发利用研究[D]. 北京:中国农业科学院, 2015. 蒋文强. 生物质热解及半焦气化特性实验研究[D]. 吉林:东北电力大学, 2016. KABIR G, HAMEED B H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals[J]. Renewable and Sustainable Energy Reviews, 2017, 70:945-967. PÉREZ N P, MACHIN E B, PEDROSO D T, et al. Biomass gasification for combined heat and power generation in the cuban context:energetic and economic analysis[J]. Applied Thermal Engineering, 2015, 90(15):1-12. WANG J J, MAO T Z. Cost allocation and sensitivity analysis of multi-products from biomass gasification combined cooling heating and power system based on the exergoeconomic methodology[J]. Energy Conversion and Management, 2015, 105(4811):230-239. DIEGO L F D, GARCÍA-Labiano F, GAYÁN P, et al. Tar abatement for clean syngas production during biomass gasification in a dual fluidized bed[J]. Fuel Processing Technology, 2016, 152(26):116-123. MOLINO A, BRACCIO G. Synthetic Natural Gas SNG Production from Biomass Gasification-thermodynamics and Processing Aspects[J]. Fuel, 2015, 139(1):425-429. 王强胜. 秸秆热解能源化利用技术研究[D]. 武汉:武汉轻工大学, 2016. HUANG M R, LI X G. Thermal degradation of cellulose and cellulose esters[J]. Journal of Applied Polymer Science, 1998,68(2):293-304. LI X G, HUANG M R, BAI H. Thermal decomposition of cellulose ethers[J]. Journal of Applied Polymer Science, 1999,73(14):2927-2936. LI X G. High-resolution thermogravimetry of cellulose esters[J]. Journal of Applied Polymer Science, 1999,71(4):573-578. 宋成芳. 生物质催化热解炭化的试验研究与机理分析[D]. 杭州:浙江工业大学, 2013. 陈尚尚. 烟气气氛下生物质热解与低热值热解气燃烧循环工艺研究[D]. 天津:河北工业大学, 2016. 王敬茹. 生物质热解气重整装置设计与实验研究[D]. 大庆:黑龙江八一农垦大学, 2019. JIN L J, BAI X Y, LI Y, et al. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Processing Technology, 2016, 147:41-46. 吴文广, 罗永浩, 陈祎, 等. 两段式固定床反应器中焦油脱除的实验研究[J]. 燃料化学学报, 2012, 40(2):177-183. LI D, XU G W, SUDA T, et al. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed[J]. Fuel Processing Technology, 2010, 91(8):882-888. 解恒参, 赵晓倩. 农作物秸秆综合利用的研究进展综述[J]. 环境科学与管理, 2015, 40(1):86-90. 徐俊明. 生物质热解油分类精制基础研究[D]. 北京:中国林业科学研究院, 2009. 王志鹏, 陈蕾. 秸秆生物炭的研究进展[J]. 应用化工, 2019, 48(2):444-447. 潘根兴, 李恋卿, 刘晓雨, 等. 热裂解生物质炭产业化:秸秆禁烧与绿色农业新途径[J]. 科技导报, 2015, 33(13):92-101. 孙小飞, 陈智伟, 李宇轩, 等. 不同热解温度对生物质炭8种元素含量的影响[J]. 福建师范大学学报(自然科学版), 2019, 35(1):55-61,74. 王宏燕, 马晓伟, 郑涵, 等. 温度梯度对秸秆炭化物质产率及特性的影响[J]. 东北农业大学学报, 2020, 51(1):1-9. 安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11):1851-1857. 朱赫男, 王志朴, 邢文龙, 等. 污泥与生物质共热解制备生物质炭工艺优化及吸附性能[J]. 化工进展, 2018, 37(增刊1):199-204. 张子豪, 袁巧霞, 代佩. 畜禽粪便与秸秆混合热解制备生物炭研究[J]. 华中农业大学学报, 2019, 38(1):133-138. ZHANG C, ZENG G M, HUANG D L, et al. Biochar for environmental management:mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts[J]. Chemical Engineering Journal, 2019, 373:902-922. LEE J W, KIDDER M, EVANS B R, et al. Characterization of biochars produced from cornstovers for soil amendment Environ[J]. Science Technology, 2010, 44:7970-7974. RAVI S, B SHARRATT S, LI J R, et al. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential[J]. Science Reports, 2016, 6:35984. 陈光, 吴卓夫, 张兆业. 秸秆综合利用研究动态及展望[J]. 吉林农业大学学报, 2016, 38(5):505-510. 赵明. 生物质固化成型燃料技术推广应用[J]. 河北农业, 2019(288):43-44. 周闯, 罗向东, 秦国辉, 等. 浅谈生物质燃料固化成型技术[J]. 应用能源技术, 2016(8):54-55. 常蕊. 农作物秸秆综合利用技术[J]. 农业工程, 2015, 5(2):39-41. LIU Y Z, WAN K D, HE Y. Experimental study of potassium release during biomass-pellet combustion and its interaction with inhibitive additives[J]. Fuel, 2020, 260,116346. PRADHAN P, MAHAJANI S M, ARORA A. Production and utilization of fuel pellets from biomass:A review[J]. Fuel Processing Technology, 2018, 181:215-232. SOLEIMANI M, TABIL X L, GREWAL R, et al. Carbohydrates as binders in bio-mass densification for biochemical and thermochemical processes[J]. Fuel, 2017, 193:134-141. MIŠLJENOVIĆ N, ČOLOVIĆ R, VUKMIROVIĆ D, et al. The effects of sugar beet molasses on wheat straw pelleting and pellet quality:a comparative study of pelleting by using a single pellet press and a pilot-scale pellet press[J]. Fuel Processing Technology, 2016, 144:220-229. JIANG L B, LIANG J, YUAN X Z, et al. Co-pelletization of sewage sludge and biomass:the density and hardness of pellet[J]. Bioresource. Technology, 2014, 166:435-443. 胡谢利, 云斯宁, 尚建丽. 生物质燃料压缩成型技术研究进展[J]. 化工新型材料, 2016, 44(9):42-44. 李泽亚, 伍林, 饶文昊, 等. 生物质炭成型燃料的成型机理及制备工艺研究进展[J]. 生物质化学工程, 2017, 51(6):62-66. 蒋大华, 孙康泰, 亓伟, 等. 我国生物质发电产业现状及建议[J]. 可再生能源, 2014, 32(4):542-546. 武国庆. 我国农作物秸秆能源化利用产业现状与展望[J]. 生物产业技术, 2015(2):7-15. VIKASH B, ASHISH T, GIRIJESH K P. 生物燃料生产[M]. 北京:中国石化出版社, 2016. CHANDEL A K, ALBARELLI J Q, SANTOS D T, et al. Comparative analysis of key technologies for cellulosic ethanol production from Brazilian sugarcane bagasse at a commercial scale[J]. Biofules Bioproductions & Biorefinin-Biofpr, 2019, 13(4):994-1014. 闵恩泽, 张晓昕. 发展我国生物质车用汽油、柴油的思考[J]. 科技导报, 2011, 29(2):3. 陈洪章. 生物炼制:有望续写石油炼制辉煌[J]. 中国石油和化工, 2015(2):48-49. 田芳, 李凡, 袁敬伟, 等. 纤维素乙醇产业现状及关键过程技术难点[J]. 当代化工, 2019, 48(9):2051-2056. 国家能源局. 生物质能发展"十三五"规划[Z]. 2016-10-28. LANTZ M, SVENSSON M, BJRNSSON L, et al. The prospects for an expansion of biogas systems in sweden-incentives,barriers and potentials[J]. Energy Policy, 2007, 35(3):1830-1843. 孙宁, 王飞, 孙仁华, 等. 国外农作物秸秆主要利用方式与经验借鉴[J]. 中国人口·资源与环境, 2016, 26(增刊1):469-474. 孙家宾, 尹显智. 德国可再生能源政策与沼气工程简介[J]. 四川环境, 2014(3):171-174. 李敏, 王海星. 农业废弃物综合利用措施综述[J]. 中国人口·资源与环境, 2012, 22(5):37-39. 马隆龙, 唐志华, 汪丛伟, 等. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊, 2019, 34(4):434-442. FU Y R, LUO T, MEI Z L. Dry anaerobic digestion technologies for agricultural straw and acceptability in China[J]. Sustainability, 2018, 10(12):1-13. 张涛, 崔宗均, 李建平, 等. 不同发酵类型青贮菌制剂对青贮发酵的影响[J]. 草业学报, 2005(3):67-71. 袁旭峰, 高瑞芳, 李培培, 等. 复合菌系MC1预处理对玉米秸秆厌氧发酵产甲烷效率的提高[J]. 农业工程学报, 2011, 27(9):266-270. 刘晶晶, 高丽娟, 师建芳, 等. 乳酸菌复合系和植物乳杆菌提高柳枝稷青贮效果[J]. 农业工程学报, 2015, 31(9):295-302. 王立宁, 周思彤. 生物质热解影响因素及技术研究进展解析[J]. 资源节约与环保, 2019(9):31. 李永玲, 吴占松, 左禹, 等. 生物质中热值双床热解制气工艺及焦油催化裂化实验研究[J]. 生物质能技术发展及应用研讨会, 2008(1):75-83. 余阳阳. 稻壳在流化床中快速热解制取生物油的实验研究[D]. 郑州:郑州大学, 2016. SACHDEVA V, HUSSAIN N, HUSK B R, et al. Biochar-induced soil stability influences phosphorus retention in a temperate agricultural soil[J]. Geoderma, 2019, 351:71-75. 田原宇. 农林废弃物自混合下行循环流化床快速热解及其产品高值化梯级利用[J]. 中国科技奖励, 2016(7):53. 天津高校科研项目. 秸秆"变"燃气燃油[J]. 资源节约与环保, 2016(2):7. GABRIELA BONASSA, LARA TALITA SCHNEIDER, VICTOR BRUNO CANEVER, et al. Scenarios and prospects of solid biofuel use in Brazil[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2365-2378. 闫金定. 我国生物质能源发展现状与战略思考[J]. 林产化学与工业, 2014, 34(4):151-158. 李海亮, 汪春, 孙海天, 等. 农作物秸秆的综合利用与可持续发展[J]. 农机化研究, 2017, 39(8):256-262. 杨世关, 肖婷, 李继红, 等. 秸秆厌氧发酵改性制备成型燃料试验[J]. 农业工程学报, 2013, 29(17):182-187. 丁保迪, 肖显斌, 安璐, 等. 稻壳制备活性炭的研究进展[J]. 广州化工, 2016, 44(24):1-3, 26. 张翼翔. 民用炉具性能在线测试方法构建及应用研究[D]. 北京:中国农业大学, 2018. 国家发展改革委. 国家发展改革委关于完善农林生物质发电价格政策的通知[Z]. 2010-07-18. 董宇, 马晶, 张涛, 等. 秸秆利用途径的分析比较[J]. 中国农学通报, 2010, 26(19):327-332. 黑龙江省委办公厅, 省政府办公厅. 关于印发黑龙江省加强农村秸秆压块燃料化利用工作实施方案的通知(厅字[2017] 57号)[Z]. 2017-11.23. 哈尔滨市人民政府办公厅. 哈尔滨市2019年秸秆综合利用工作实施方案(征求意见稿)[Z]. 2019-11-26. 长春日报. 长春朝阳区对秸秆离田农民每公顷给予300元补贴[N/OL]. 长春:长春日报, 2018[2020-04-13]. http://jl.sina.com.cn/news/m/2018-04-04/detail-ifysuuya3001559.shtml. 孙宁, 王亚静, 高春雨, 等. 秸秆收储运成本分析:以河南省为例[J]. 中国农业资源与区划, 2018, 39(5):91-96, 230. 王雪, 杜静, 吴华山, 等. 基于作业成本法的秸秆收贮运成本分析研究:以江苏省为例[J]. 农业资源与环境学报, 2017, 34(3):207-214. 王红彦. 秸秆气化集中供气工程技术经济分析[D]. 北京:中国农业科学院, 2012. 中华人民共和国国务院. 中华人民共和国企业所得税法实施条例[Z]. 2007-12-06. 张利军, 谢继荣, 马文瑾, 等. 污泥厌氧消化沼气优化利用成本分析[J]. 给水排水, 2014, 50(增刊1):145-148. 郝晓地, 陈奇, 李季, 等. 污泥干化焚烧乃污泥处理/处置终极方式[J]. 中国给水排水, 2019, 35(4):35-42. 王许涛, 刘丽莎, 张百良. 蒸汽爆破预处理技术应用于秸秆厌氧发酵的技术经济分析[J]. 可再生能源, 2010, 28(2):123-126. 李在峰, 雷廷宙, 杨树华, 等. 玉米秸秆颗粒燃料致密成型电耗测试[J]. 农业工程学报, 2006(增刊1):117-119. 闫德冉, 陈伟红, 张丽莉, 等. 纤维乙醇研究现状及展望[J]. 生物加工过程, 2007, 5(1):9-13. 李道义, 尹玲玉, 张雪立. 秸秆燃料乙醇废渣的材料化利用研究进展[J]. 农业工程, 2014,4(4):59-61. 刘红艳, 胡涵, 王昌梅, 等. 沼肥对水果产量、品质和土壤理化性质影响的研究现状[J]. 中国沼气, 2019, 37(6):65-69. 贺清尧. 基于沼液的可再生吸收剂的CO2吸收强化机制及工艺[D]. 武汉:华中农业大学,2018. 王红彦. 基于生命周期评价的秸秆沼气集中供气工程能值分析[D]. 北京:中国农业科学院, 2016. 陈冬冬. 铈基催化剂的制备改性及其对秸秆加氢液化制取生物油的研究[D]. 南京:东南大学, 2018. NI S, LIU R H, RAHMAN M M. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5:focus on structure[J]. Fuel Processing Technology, 2020, 199:106301. AHMAD SFK, ALI UFM, ISA K M. Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass:a review[J]. Environmental Engineering Research, 2018, 25(1):18-28. POORNA CHANDRIKA SABAPATHY, SABARINATHAN DEVARAJA, KATHARINA MEIXNER. Recent developments in Polyhydroxyalkanoates (PHAs) production:a review[J]. Bioresource Technology, 2020,306:123132.
点击查看大图
计量
- 文章访问数: 1416
- HTML全文浏览量: 130
- PDF下载量: 79
- 被引次数: 0