OPTIMIZING BIOLOGICAL COMBINATION TECHNOLOGY TO IMPROVE PURIFICATION EFFICIENCY OF BLACK-ODOR WATER
-
摘要: 目前组合生物技术治理黑臭水体存在效率低、周期长、易复发等问题,进一步提高组合生物技术对黑臭水体净化效率成为亟待解决的问题。通过单因素及正交实验分析比较了不同促生剂、曝气方式、填料、植物对黑臭水体的净化效率,并通过高通量测序从微生物角度理解不同条件净化效率产生差异的原因。结果表明:不同条件对黑臭水体净化效率存在差异,其中净化效果较佳的为生物促生剂(BE)、持续曝气、弹性立体填料及水花生,且各实验组优势菌门、优势菌属及其相对丰度不同。说明微生物群落结构组成的差异是不同条件对黑臭水体净化效率产生差异的原因。持续曝气,刺激了好氧菌与兼性菌的大量生长;弹性立体填料表面生长的生物膜,为好氧菌、厌氧菌、兼性菌尤其是后两者的生长提供了必需条件,刺激了厌氧菌、兼性菌的大量生长繁殖;水花生也有其独特的有利于污染物净化的根际微生物群落结构。研究结果可为组合生物技术选取高效的条件参数提供参考,为强化组合生物技术高效净化黑臭水体提供理论依据。Abstract: Many problems still exist, such as low efficiency, long cycles, and easy recurrence for treatment of black-odor water. Further improving the purification efficiency of black-odor water by combinatorial biotechnology has become an urgent problem. Therefore, in this study, the purification efficiency of black-odor water by different bio-promoter, aeration methods, fillers, and plants was compared and analyzed by single factor and orthogonal experiments, and the reasons for the differences in purification efficiency under different conditions were revealed by high-throughput sequencing technique from the perspective of microorganisms. The results showed that there were differences in the purification efficiency of black-odor water under different conditions. Among them, the biological purification enhancer (BE), continuous aeration, elastic three-dimensional filler and water peanut were better in terms of purification capacity, and the dominant phyla, dominant bacteria. And their relative abundance were different in each experimental group. This showed that the differences in the composition of microbial community structure maybe the reason for the difference in purification efficiency of black-odor water under different conditions. Continuous aeration stimulated a large number of aerobic and facultative bacteria; the biofilm growing on the surface of the elastic three-dimensional filler provided necessary conditions for the growth of aerobic bacteria, anaerobic bacteria, and facultative bacteria, especially for the latter two, and stimulated the large-scale growth and reproduction of anaerobic bacteria and facultative bacteria; water peanut also had its unique rhizosphere microbial community structure that was conducive to pollutant purification. The results of this study could provide a reference for selecting efficient condition parameters for combinatorial biotechnology, and a theoretical basis for efficiently purifying black-odor water by the enhanced combinatorial biotechnology.
-
Key words:
- combinatorial biotechnology /
- black-odor water /
- purification /
- bio-promoter /
- aeration method /
- filler /
- plant
-
LANG Z W, SIEGERT M, FANG W W, et al. Blackening and odorization of urban rivers:a biogeochemical process[J]. FEMS Microbiology Ecology, 2017, 94(3). SONG C, LIU X L, SONG Y H, et al. Key blackening and stinking pollutants in dongsha river of beijing:spatial distribution and source identification[J]. Journal of Environmental Management, 2017, 200(15):335-346. CAI W, LI Y, SHEN Y, et al. Vertical distribution and assemblages of microbial communities and their potential effects on sulfur metabolism in a black-odor urban river[J]. Journal of Environmental Management, 2019, 235(1):368-376. RICHARDSON C J, FLANAGAN N E, HO M, et al. Integrated stream and wetland restoration:a watershed approach to improved water quality on the landscape[J]. Ecological Engineering, 2011, 37(1):25-39. ZEEV R, ADRIANA G, AMIT G. Greywater disinfection with the environmentally friendly hydrogen peroxide plus[J]. Chemosphere, 2010,78(1):61-65. FACCIO G, KRUUS K, SALOHEIMO M, et al. Bacterial tyrosinases and their applications[J]. Process Biochemistry, 2012, 47(12):1749-1760. 张燕, 陶进雄, 梁妙, 等. 中山市典型污染河涌水体整治实验方法和效果分析[J]. 环境工程, 2019, 37(10):73-77. 余恒, 孙安民. 黑臭河道生态治理综合技术研究与应用实例[J]. 水处理技术, 2019, 45(7):128-132. 宋士迎, 黄建军, 关婕, 等. 有持续外源污染黑臭水体的生态修复:以大马坊河下游段水生态修复工程为例[J]. 给水排水, 2019, 55(增刊1):197-200,224. 许瑞,王胜楠,陈乐等.基于三维荧光光谱技术解析不同微生物法净化黑臭水体的效果[J].环境工程学报,2020,14(1):123-132. 许瑞,邹平,付先萍,等.pH对黑臭水体净化效率及真菌群落结构的影响[J].环境工程,2019,37(10):97-104. WU L Y, WEN C Q, QIN Y Q, et al. Phasing amplicon sequencing on illumina miseq for robust environmental microbial community analysis[J]. BMC Microbiology, 2015,15(1):125. TAN X, YANG Y L, LIU Y W, et al. Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater[J]. Bioresource Technology, 2019, 280:441-446. NIU T H, ZHOU Z, SHEN X L, et al. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process[J]. Water Research, 2016, 90(3):369-377. 贾丽. A+OSA污泥减量工艺物质能量转化及其微生态特性研究[D]. 重庆:重庆大学, 2012. MCGARWEY J A, MOLLER W G, ZHANG R H, et al. Bacterial population dynamics in dairy waste during aerobic and anaerobic treatment and subsequent storage[J]. Applied and Environmental Microbiology, 2007, 73(1):193-202. CHEN G K, HUANG J, FANG Y, et al. Microbial community succession and pollutants removal of a novel carriers enhanced duckweed treatment system for rural wastewater in dianchi lake basin[J]. Bioresource Technology, 2019, 276:8-17. 李龙山, 倪细炉, 李昌晓, 等. 生活污水对土壤及湿地植物根际细菌群落的影响[J]. 农业环境科学学报, 2016, 35(11):2163-2170. LIAO R,SHEN K,LI A M,et al.High-nitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis[J].Bioresource Technology,2013,134:190-197. 付昆明, 付巢, 李慧, 等. 主流厌氧氨氧化工艺的运行优化及其微生物的群落变迁[J]. 环境科学, 2018, 39(12):5596-5604. OUATTARA S A, ASSIH E A, THIERRY S, et al. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(5):1247-1251. GROUZDEV D S, BABICH T L, SOKOLOVA D S, et al. Draft genome sequence data and analysis of Shinella sp. strain JR1-6 isolated from nitrate-and radionuclide-contaminated groundwater in Russia[J]. Data in Brief, 2019, 25:104319. 柯娜, 肖昌松, 应启锋, 等. 一个可降解直链烷基苯磺酸盐的新种[J]. 微生物学报, 2003, 43(1):1-7. RABUS R, GADE D, HELIG R, et al. Analysis of N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1 by a proteomic approach[J]. 2002, 2(6):649-655. TSCHECH A, FUCHS G. Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads[J]. Archives of Microbiology, 1987, 148(3):213-217. BIAN X, GONG H, WANG K J. Pilot-scale hydrolysis-aerobic treatment for actual municipal wastewater:performance and microbial community analysis[J]. International Journal of Environmental Research and Public Health, 2018, 15(3):477. WOLF M. Phylogeny of firmicutes with special reference to mycoplasma (mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(3):871-875. KONDAVEETI S, LEE S H, PARK H D, et al. Bacterial communities in a bioelectrochemical denitrification system:the effects of supplemental electron acceptors[J]. Water Research, 2014, 51:25-36. 王宜莹. Glutamicibacter sp. Strain 0426对邻苯二甲酸二丁酯的降解研究[D]. 济南:山东大学, 2018. BELLER H R, CHAIN P S G, LETAIN T E, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium thiobacillus denitrificans[J]. Journal of Bacteriology, 2006, 188(4):1473-1488. PARK J Y, YOO Y J. Biological nitrate removal in industrial wastewater treatment:Which electron donor we can choose[J]. 2009, 82(3):415-429. PURDY K J, NEDWEL D B, EMBLEY T M. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting antarctic sediments[J]. Applied and Environmental Microbiology, 2006, 72(6):4501-4501. 刘兰. 云南腾冲及西藏曲才地热区可培养高温厌氧细菌多样性研究[D]. 昆明:云南大学, 2015. ZHENG M S, ZHOU N, LIU S F, et al. N2O and NO emission from a biological aerated filter treating coking wastewater:main source and microbial community[J]. Journal of Cleaner Production, 2019, 213:365-374. YUAN X, NOGI Y, TAN X, et al. Arenimonas maotaiensis sp. Nov., isolated from fresh water[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 64:3994-4000. 张骏尧, 王志伟, 梅晓洁, 等. 厌氧动态膜生物反应器处理冷轧平整液废水[J]. 环境工程学报, 2017,11(11):5884-5891. 鲁帅领, 朱慧, 符波, 等. 高温条件下混菌发酵合成气产乙酸及其群落结构[J]. 应用与环境生物学报, 2019, 25(1):164-169. 高永超, 王加宁, 孔学, 等. 石油降解菌多食鞘氨醇杆菌的发酵条件优化[J]. 生物技术, 2009, 19(1):74-77. SHI X Q, NG K K, LI X R, et al. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment[J]. Environmental Science and Technology, 2015, 49(10):6231-6239. KOKKWANG N, SHI X Q, SAYLEONG O, et al. Pyrosequencing reveals microbial community profile in anaerobic bioentrapped membrane reactor for pharmaceutical wastewater treatment[J]. 2016, 200:1076-1079. REGUEIRO L, VEIGA P, FIGUEROA M, et al. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters[J]. Microbiological Research, 2012, 167(10):581-589. XUE J, SCHMITZ B W, CATON K, et al. Assessing the spatial and temporal variability of bacterial communities in two bardenpho wastewater treatment systems via illumina miseq sequencing[J]. Science of the Total Environment, 2019, 657:1543-1552. LEE S H, CHO J C. Group-specific PCR primers for the phylum Acidobacteria designed based on the comparative analysis of 16S rRNA gene sequences[J]. Journal of Microbiological Methods, 2011, 86(2):195-203. DEDYSH S N, DAMSTE J S S. Acidobacteria[M]. Chichester:John Wiley and Sons, 2018:1-5. LEE K C Y, DUNFIELD P F, STOTT M B. The phylum armatimonadetes[M]. The Probaryotes:Springer Berlin Heidelberg, 2014:447-458. 周丽沙, 李慧, 张颖, 等. 石油污染土壤鞘氨醇单胞菌遗传多样性16S rDNA-PCR-DGGE分析[J]. 土壤学报, 2011,48(4):804-812. LEE S H, LEE S O, JANG K L, et al. Microbial flocculant from Arcuadendron sp. TS-49[J]. Biotechnology Letters, 1995, 17(1):95-100. 邵基伦. Burkholderia菌异养硝化-好氧反硝化特性及其强化废水处理的研究[D]. 广州:暨南大学, 2015. 徐文韬. 壬基酚对废水处理装置中微生物菌群的影响[D]. 上海:上海交通大学, 2013. KOSHLAF E, SHAHSAVARI E, ABURTOMEDINA A, et al. Bioremediation potential of diesel-contaminated libyan soil[J]. Ecotoxicology and Environmental Safety, 2016, 133:297-305. DEMEYER S E, COOREVITS A, WILLEMS A. Tardiphaga robiniae gen. Nov., sp nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium)[J]. Systematic and Applied Microbiology, 2012, 35(4):205-214. PEARCE S L, PANDEY R, DORRIAN S J, et al. Genome sequence of the newly isolated chemolithoautotrophic Bradyrhizobiaceae strain SG-6C[J]. Journal of Bacteriology, 2011, 193(18):5057-5057. ZHENG H M, ZHONG Z T, LAI X, et al. A luxr/luxi-type quorum-sensing system in a plant bacterium, mesorhizobium tianshanense, controls symbiotic nodulation[J]. Journal of Bacteriology, 2006, 188(5):1943-1949. 周平发. 刺槐根瘤菌新种Mesorhizobium robiniae的研究[D]. 杨凌:西北农林科技大学, 2010. KAPARULLIN E N, DORONINA N V, TROTSENKO I A. Aerobic degradation of ethylenediaminetetraacetate (review)[J]. Prikl Biokhim Mikrobiol, 2011, 47(5):508-522.
点击查看大图
计量
- 文章访问数: 598
- HTML全文浏览量: 51
- PDF下载量: 31
- 被引次数: 0