PYROLYSIS AND CARBON PRODUCTION OF RICE HUSK IN FLUIDIZED BED UNDER FLUE GAS WITH DIFFERENT CO2/O2 ATMOSPHERES
-
摘要: 烟气常用作流化床热解的气体热载体,而烟气中低浓度的CO2、O2等成分对流化床热解制炭的影响少有报道。在自行搭建的小型流化床实验台上开展了不同气氛(不同N2/O2/CO2体积比,简单模拟烟气氛围)下稻壳热解制备生物炭试验研究,获得了稻壳热解三相产物产率分布规律、稻壳生物炭工业分析特性基本特征,通过FTIR、BET手段分析了生物炭表面官能团及多孔结构变化情况,同时探究了不同O2浓度下稻壳热解制炭能量转移特性。结果表明:提高O2和CO2浓度均有利于热解产物由固相向气相转移,会降低炭产率、降低生物炭中有机组分含量,但有利于生物炭表面形成多孔结构和提高表面官能团芳香化程度;稻壳在低O2浓度下热解能达到80%上的能耗比以及70%以上的能量回收率。Abstract: Pyrolysis of rice husk in different atmospheres (by alternating the volume ratios of N2, O2, and CO2) were carried out on a small-scale fluidized bed to obtain the distribution pattern of the three-phase product of rice husk pyrolysis and the characteristics of the rice husk biochar. The functional groups and porous structure on the surface of biochar were analyzed by means of FTIR and BET, and the energy transfer during the pyrolysis of rice husk under different O2 concentrations were investigated. The results showed that increasing the concentration of O2 and CO2 were conducive to the transfer of pyrolysis products from the solid phase to the gas phase, which would reduce the biochar yield and the content of organic components in biochar, but it was conducive to the formation of porous structures and aromatic functional groups on the surface of biochar. Rice husk could achieve an energy consumption ratio of more than 80% and an energy recovery rate of more than 70%, under lower O2 concentration.
-
Key words:
- pyrolysis /
- oxidation /
- carbon dioxide /
- fluidized-bed /
- biochar /
- rice husk
-
郭彤荔. 我国清洁能源现状及发展路径思考[J]. 中国国土资源经济, 2019, 39(4):39-42. XU G, LV Y C, SUN J N, et al. Recent advances in biochar applications in agricultural soils benefits and environmental implications[J]. Clean-Soil Air Water, 2012, 40(10):1093-1098. AHMAD M, LEE S S, DOU X M, et al. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresour Technol, 2012, 118:536-44. LEHMAN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota:a review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836. ZHANG K K, SUN P, FAYE M C A S, et al. Characterization of biochar derived from rice husk and its potential in chlorobenzene degradation[J]. Carbon, 2018, 130:730-740. 廖芬, 杨柳, 李强, 等. 不同生物质来源生物炭品质的因子分析与综合评价[J]. 华南农业大学学报, 2019, 40(3):29-37. 牛帅星, 周亚杰, 张文静, 等. 气氛对煤热解行为影响的研究进展[J]. 应用化工, 2019, 48(3):639-645. 汪莹莹. 基于高温烟气加热的热解气化炉热工特性研究[D]. 武汉:华中科技大学, 2006. 刘泽伟,胡建杭,巴飞,等. CO2/N2气氛下成型松木屑热解制备成型生物质炭的实验研究[J]. 中国电机工程学报, 2018, 38(11):3281-3288. 姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J]. 生物质化学工程, 2019, 53(3):46-58. 穆合塔尔·斯依提, 王勤辉, 唐健, 等. CO2气氛影响烟煤流化床热解特性的实验研究[J]. 中国电机工程学报, 2018, 38(13):3881-3889. WEBER K, QUICKER P. Properties of biochar[J]. Fuel, 2018, 217:240-261. 吴文广, 罗永浩, 陈祎, 等. 生物质在惰性及含氧条件下热解特性[J]. 太阳能学报, 2012, 33(9):144-150. LIU Z W. ZHANG F X, YAN S J, et al. Effects of temperature and low-concentration oxygen on pine wood sawdust briquettes pyrolysis:gas yields and biochar briquettes physical properties[J]. Fuel Processing Technology, 2018, 177:228-236. LIU X B, LI W Z, XU H Y, et al. A comparative study of non-oxidative pyrolysis and oxidative cracking of cyclohexane to light alkenes[J]. Fuel Processing Technology, 2004, 86(2):151-167. POTTMAIER D, COSTA, MÁRIO, FARROW T, et al. Comparison of rice husk and wheat straw:from slow and fast pyrolysis to char combustion[J]. Energy & Fuels, 2013, 27(11):7115-7125. 宫聚辉, 邵婷婷, 王克冰. CO2/N2气氛下的褐煤和沙柳共热解特性及动力学研究[J]. 林产化学与工业, 2018, 38(4):95-102. CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107:419-428. PETERSON S C, JACKSON M, KIM S, et al. Increasing biochar surface area:optimization of ball milling parameters[J]. Powder Technology, 2012, 228:115-120. 闫思佳, 胡建杭, 刘泽伟, 等. 温度和低氧条件对成型生物质炭孔结构影响的实验研究[J]. 化工进展, 2018, 37(8):3100-3106. LIMA I M, BOATENG A A, KLASSON K T. Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(11):1515-1521. 孙承亮, 许江林, 于佳雪, 等. 废轮胎热解工艺的热平衡分析[J]. 上海节能, 2018, 359(11):37-41.
点击查看大图
计量
- 文章访问数: 184
- HTML全文浏览量: 14
- PDF下载量: 4
- 被引次数: 0