ANAEROBIC FERMENTATION SLURRY RECYCLED FOR DEGRADATION OF HEAVY METAL-CONTAINING RICE STRAW
-
摘要: 针对含重金属水稻秸秆厌氧发酵过程产生的含重金属发酵液的处置问题,将其作为接种物对水稻秸秆进行回流,探究其反复回用以处理含重金属水稻秸秆的可能性。研究结果表明:厌氧发酵液回流可降解含重金属水稻秸秆,接种厌氧发酵液有助于降解水稻秸秆中木质素和半纤维素,水稻秸秆厌氧发酵释放的重金属对其厌氧发酵过程未产生明显抑制作用。在固液比为3.3%条件下,接种发酵液后含重金属水稻秸秆总甲烷产量和总产气量分别达到121.2,282.6 mL/g VS。秸秆中Cu、Cd、Pb和Zn的释放率分别达到94.22%、54.21%、72.67%和98.55%,沼渣中重金属含量达到GB 8172—87《城镇垃圾农用控制标准》要求,可实现还田利用。发酵结束后,发酵液中Cu、Cd、Pb和Zn浓度分别为0.30,0.073,0.10,2.57 mg/L。结果表明,接种厌氧发酵液可以促进水稻秸秆中重金属释放,进而实现含重金属秸秆和发酵液的联合处置。Abstract: In this study, the disposal possibility of anaerobic fermentation slurry produced in the process of anaerobic fermentation for heavy metal-containing rice straw was studied. The results showed that the circulation reflux of anaerobic fermentation slurry could accelerate the degradation of rice straw, including cellulose and hemicellulose. Meanwhile, the heavy metals released from rice straw in the anaerobic fermentation process was similar to that with original anaerobic fermentation slurry. The methane yields of 121.2, 282.6 mL/g VS was achieved under the solid to liquid ratio of 3.3%. Furthermore, the release percentages of Cu, Cd, Pb and Zn from rice straw arrived to 94.22%, 54.21%, 72.67% and 98.55%, respectively. The content of heavy metals in straw residues was significantly lower than the levels for the Urban Garbage Agricultural Control Standard in China (GB 8172-87) and could be backed to the field. After fermentation, the concentration of Cu, Cd, Pb and Zn in anaerobic fermentation slurry were 0.30, 0.073, 0.10, 2.57 mg/L respectively. The results showed that the anaerobic fermentation slurry recycled was available for the anaerobic fermentation of heavy metals-containing rice straw and beneficial to the release of heavy metals from rice straw.
-
Key words:
- rice straw /
- anaerobic fermentation /
- anaerobic fermentation slurry /
- circulation reflux /
- heavy metals
-
中华人民共和国生态环境部,中华人民共和国国土资源部. 全国土壤污染状况调查公报[EB/OL]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm. 2014-4-17. BIAN B, LIN C, LV L. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China[J]. Environmental Science and Pollution Research,2016,23:16955-16964. WU G, KANG H B, ZHANG X Y, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials,2010,174:1-8. 蒋建国,赵振振,杜雪娟,等. 秸秆高固体厌氧消化预处理实验研究[J]. 环境科学,2007,28(4):886-890. 曹知平,吴静,左剑恶,等. 强化两相污泥高固厌氧消化系统的微生物群落[J]. 环境科学,2017,38(5):2059-2064. 陈广银,曹杰,叶小梅,等. pH值调控对秸秆两阶段厌氧发酵产沼气的影响[J]. 生态环境学报,2015,24(2):336-342. YU L, BIAN C, ZHU N W, et al. Enhancement of methane production from anaerobic digestion of waste activated sludge with choline supplement[J]. Energy,2019,173:1021-1029. DE L R, RAPOSO F, RINCÓN B, et al. Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake[J]. Bioresource Technology,2009,100(18):4133-4138. 辛立庆,郭朝晖,肖细元,等. 酸碱预处理对水稻秸秆厌氧消化中重金属释放的影响[J]. 矿冶工程,2019,39(2):75-78. MOTTE J C, ESCUDIé R, BERNET N, et al. Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion[J]. Bioresource Technology,2013,144:141-148. LIU A M, XU S S, LU C L, et al. Anaerobic fermentation by aquatic product wastes and other auxiliary materials[J]. Clean Technologies and Environmental Policy,2013,16(2):415-421. BOURVEN I, CASELLAS M, BUZIER R, et al. Potential of DGT in a new fractionation approach for studying trace metal element impact on anaerobic digestion:the example of cadmium[J]. International Biodeterioration & Biodegradation,2017,119:188-195. GUO Q, MAJEED S, XU R, et al. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion:a review[J]. Journal of Environmental Management,2019,240:266-272. HAO H, TIAN Y L, ZHANG H Y, et al. Copper stressed anaerobic fermentation:biogas properties, process stability, biodegradation and enzyme responses[J]. Biodegradation,2017,28:369-381. TIAN Y L, ZHANG H Y. Producing biogas from agricultural residues generated during phytoremediation process:possibility, threshold, and challenges[J]. International Journal of Green Energy,2016,13(15):1556-1563. XIN L Q, GUO Z H, XIAO X Y, et al. Feasibility of anaerobic digestion for contaminated rice straw inoculated with waste activated sludge[J]. Bioresource Technology,2018,266:45-50. 王晓萍,林桢,金鑫. 紫外扫描式水质COD测量技术与仪器研制[J]. 浙江大学学报(工学版),2006,40(11):1952-1954,1959. MONTECCHIO D, ASTALS S, DI C V, et al. Anaerobic co-digestion of food waste and waste activated sludge:ADM1 modelling and microbial analysis to gain insights into the two substrates' synergistic effects[J]. Waste Management,2019,97:27-37. ZHAO Y B, SUN F R, YU J D, et al. Co-digestion of oat straw and cow manure during anaerobic digestion:stimulative and inhibitory effects on fermentation[J]. Bioresource Technology,2018,269:143-152. HILL D T, HOLMBERG R D. Long chain volatile fatty acid relationships in anaerobic digestion of swine waste[J]. Biological Wastes,1988,23:195-214. RENE E R, KIM S J, PARK H S. Effect of COD/N ratio and salinity on the performance of sequencing batch reactors[J]. Bioresource Technology, 2008,99:839-846. WANG H X, XU J L, SHENG L X, et al. Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production[J]. Energy,2018,165:411-418. PHUTTARO C, SAWATDEENARUNAT C, SURENDRA K C, et al. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass:influence of pretreatment temperatures, inhibitors and soluble organics on methane yield[J]. Bioresource Technology,2019,284:128-138. DEMIREL B, YENIGUN O. Anaerobic acidogenesis of dairy wastewater:the effects of variations in hydraulic retention time with no pH control[J]. Journal of Chemical Technology & Biotechnology,2004,79:755-760. OROZCO A M, NIZAMI A S, MURPHY J D, et al. Optimizing the thermophilic hydrolysis of grass silage in a two-phase anaerobic digestion system[J]. Bioresource Technology,2013,143:117-125. MARTINEZ J, GUIZIOU F, PEU P, et al. Influence of treatment techniques for pig slurry on methane emissions during subsequent storage[J]. Biosystems Engineering,2003,85(3):347-354. 周屹,郭亮,李小明,等. 灭菌预处理污泥及其滤液产氢发酵的比较研究[J]. 环境工程学报,2008,2(10):1332-1338. 甘荣,葛明民,刘勇迪,等. 活性炭在中高温条件下对玉米秸秆厌氧发酵的影响[J]. 环境科学,2017,38(6):2607-2616. YIN X Z, LAWRENCE M, MASKELL D, et al. Comparative micro-structure and sorption isotherms of rice straw and wheat straw[J]. Energy and Buildings,2018,173:11-18. GU Y, CHEN X H, LIU Z G, et al. Effect of inoculum sources on the anaerobic digestion of rice straw[J]. Bioresource Technology,2014,158:149-155. 王菊思,赵丽辉,贾智萍,等. 锌对厌氧体系的影响及5种重金属离子抑制作用的比较[J]. 环境科学,1994,15(2):20-23. 刘研萍,文雪,张继方,等. 秸秆沼渣中重金属的安全风险分析[J]. 中国沼气,2014,32(1):90-94. WANG D L, AI P, YU L, et al. Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation[J]. Biosystems Engineering,2015,132:47-55. LEE J, PARK K Y, CHO J, et al. Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion[J]. Chemosphere,2018,191:520-526. 周小勇,仇荣亮,胡鹏杰,等. 镉和铅对长柔毛委陵菜体内锌的亚细胞分布和化学形态的影响[J]. 环境科学,2008(7):2028-2036.
点击查看大图
计量
- 文章访问数: 135
- HTML全文浏览量: 21
- PDF下载量: 4
- 被引次数: 0