EFFECT OF SAWDUST BIOCHAR ON ANAEROBIC FERMENTATION OF STRAW AND COW MANURE FOR METHANE PRODUCTION
-
摘要: 利用AMPTS全自动甲烷潜力测试系统、First-Order水解模型、修正的Gompertz和logistic模型,在了解生物炭各理化特性的基础上,通过对厌氧发酵的水解速率、产甲烷潜力及最大甲烷产率等进行拟合和对比分析,研究木屑生物炭对序批式湿法厌氧发酵的影响规律。结果表明:木屑生物炭对序批式厌氧发酵前期的底物水解速率、甲烷产率及累积甲烷产量均有着显著的影响,其中木屑生物炭对水解速率的影响强于果木生物炭和活性炭,较椰壳生物炭弱,且提升厌氧发酵系统的缓冲能力较椰壳生物炭和活性炭强。木屑生物炭对厌氧发酵的强化作用与生物炭粒径成负相关,当粒径<0.5 mm时强化效果最好,提高水解速率33.93%,提升最大产甲烷速率约19.32%,缩短延滞期约51.28%。Abstract: Utilizing the AMPTS fully automated test system of methane production potential, first-order hydrolysis model, modified Gompertz model and logistic model, based on understanding the physical and chemical properties of biochar, through modeling and comparative analysis the hydrolysis rate, the methanogenic potential and the maximum methane yield of anaerobic fermentation to research the effect of woody biochar on sequential batch wet anaerobic fermentation. The results showed that sawdust biochar had significant effect on substrate hydrolysis, the methane yield and cumulative methane production in the pre-stage anaerobic fermentation. The effect of sawdust biochar on the hydrolysis rate was stronger than that of fruit wood biochar and activated carbon in the early stage of anaerobic fermentation, which was weaker than that of coconut shell charcoal. The buffering capacity of sawdust biochar on anaerobic fermentation system was stronger than that of coconut shell biochar and activated carbon. The Enhanced effect of sawdust biochar on anaerobic fermentation was negatively correlated with the particle size of biochar. The smaller the particle size of the sawdust biochar, the more significant the effect of anaerobic fermentation was. When the particle size was less than 0.5 millimeter, the strengthening effect was best, the hydrolysis rate was increased by 33.93%, the maximum methanogenesis rate was increased by 19.32%, and the lag period was shortened by 51.28%.
-
Key words:
- biochar /
- particle size /
- hydrolysis rate /
- methane yield
-
陈卫红,石晓旭.我国农林废弃物的应用与研究现状[J].现代农业科技,2017(18):148-149. 申卫博,张云,汪自庆,等.木材制备生物炭的孔结构分析[J].中国粉体技术,2015,21(2):24-27,31. HO S H, CHEN Y D, YANG Z K, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology, 2017, 246:142-149. ZHAO S X,TA N, WANG X D. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material[J]. Energies, 2017,10(9):1293. 蒋旭涛,迟杰.铁改性生物炭对磷的吸附及磷形态的变化特征[J].农业环境科学学报,2014,33(9):1817-1822. WANG D, AI J, SHEN F, et al. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost[J]. Bioresource Technology, 2017, 227:286-296. 韩光明. 生物炭对不同类型土壤理化性质和微生物多样性的影响[D].沈阳:沈阳农业大学, 2013. 李喜凤.稻壳炭与有机肥配施对苹果园土壤有机碳组分及微生物活性的影响[D].杨凌:西北农林科技大学,2016. PREETI S,UMA M. Biosurfactant-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of E. coli and Enterobacter aerogenes[J]. Bioresource Technology, 2017, 243:566-572. ZHAO H Q, LIU Q, WANG Y X, et al. Biochar enhanced biological nitrobenzene reduction with a mixed culture in anaerobic systems:short-term and long-term assessments[J]. Chemical Engineering Journal, 2018,351:912-921. LÜ F, LUO C, SHAO L, et al. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[J]. Water Research, 2016, 90:34-43. DIVINE D, SEWU, PATRICK BOAKYE, SEUNG H WOO. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste[J]. Bioresource Technology,2017,224:206-213. 周丹丹,吴文卫,赵婧,等.花生壳和松木屑制备的生物炭对Cu2+的吸附研究[J].生态环境学报,2016,25(3):523-530. 袁彧,刘研萍,陆文静,等.规模化沼气工程消化效率及碳减排核算[J].环境工程学报,2019,13(1):204-212. LI C,IVO A N, LU W J, et al. Assessment of the degradation efficiency of full-scale biogas plants:a comparative study of degradation indicators[J]. Bioresource Technology,2017,244:304-312. LO N L,SHI J, LI Y B. Methane production from solid-state anaerobic digestion of lignocellulosic biomass[J]. Biomass and Bioenergy,2012,46:125-132. ZHANG W Q, WEI Q Y, WU S B,et al. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions[J]. Applied Energy,2014,128:175-183. 于佳动,赵立欣,冯晶,等.喷淋次数和接种量对序批式秸秆牛粪混合干发酵产气性能的影响[J].农业工程学报,2018,34(21):228-233. CHEN W, LIAO X D, WU Y B, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting[J]. Waste Management,2017,61:506-515. GOPI K K,SANG H K. Anaerobic treatment of apple waste with swine manure for biogas production:batch and continuous operation[J]. Applied Energy,2013,103:61-72. 冯晶,赵立欣,姚宗路,等.稻壳鸭粪混合物料厌氧消化产沼气模型研究[J].环境科学与技术,2016,39(增刊2):232-236. PAN J T, MA J Y, LIU X X, et al. Effects of different types of biochar on the anaerobic digestion of chicken manure[J]. Bioresource Technology, 2019,275, 258-265. 卜晓莉,薛建辉.生物炭对土壤生境及植物生长影响的研究进展[J].生态环境学报,2014,23(3):535-540. SHEN Y W, LINVILLE J L, URGUN-DEMIRTAS M, et al. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal[J]. Applied Energy, 2015, 158:300-309. 孙媛媛.芦竹活性炭的制备、表征及吸附性能研究[D].济南:山东大学,2014. 张千丰,王光华.生物炭理化性质及对土壤改良效果的研究进展[J].土壤与作物,2012,1(4):219-226. LI Q, XU M J, WANG G J, et al. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J]. Bioresource Technology, 2017, 249:1009-1016. FAGBOHUNGBE M O, HERBERT B M J, HURST L, et al. Impact of biochar on the anaerobic digestion of citrus peel waste[J]. Bioresource Technology, 2016, 216:142-149. MUMME J, SROCKE F, HEEG K, et al. Use of biochars in anaerobic digestion[J]. Bioresource Technology, 2014, 164:189-197. SUNYOTO N M S, ZHU M, ZHANG Z, et al. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J]. Bioresource Technology, 2016, 219:29-36. LUO C H, FAN L, SHAO L M, et al. Corrigendum to "Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes"[Water Res. 68(2014) 710-718] [J]. Water Research, 2015, 68:710-718. YOO G, KANG H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment[J]. Journal of Environment Quality, 2012, 41(4):1193-1202. WANG G, QIAN L, XIN G, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar:performance and associated mechanisms[J]. Bioresource Technology, 2018, 250:812-820. YANG W, WANG H, ZHOU J, et al. Hydrolysis kinetics and mechanism of chitin in subcritical water[J]. The Journal of Supercritical Fluids, 2018:135, 254-262. YANG W, WANG H, ZHOU J, et al. Hydrolysis kinetics and structure changes of wood meal in subcritical water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4):3544-3552. NMS S, ZHU M M, ZHANG Z Z, et al. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J]. Bioresource Technology, 2016, 219:29-36. WANG M, LEE E, DILBECK M P, et al. Thermal pretreatment of microalgae for biomethane production:experimental studies, kinetics and energy analysis[J]. Journal of Chemical Technology & Biotechnology, 2016:92(2), 399-407. XU J, MUSTAFA A M, LIN H, et al. Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment[J]. Waste Management, 2018,78:849-856. 索桂芳,吕豪豪,汪玉瑛,等.不同生物炭对氮的吸附性能[J].农业环境科学学报,2018,37(6):1193-1202. 翟宁宁. 餐厨垃圾厌氧发酵过程稳定性及高效产气工艺研究[D]. 杨凌:西北农林科技大学,2016. 聂红. 高浓度鸡粪厌氧发酵产甲烷的氨抑制研究[D]. 北京:中国石油大学,2016. 张万钦. 微量元素添加对餐厨垃圾和鸡粪厌氧消化性能的调控研究[D]. 北京:中国农业大学,2016.
点击查看大图
计量
- 文章访问数: 226
- HTML全文浏览量: 28
- PDF下载量: 11
- 被引次数: 0