DISTRIBUTION CHARACTERISTICS AND INFLUENCING FACTORS OF ANTIBIOTICS IN SOILS OF DIFFERENT LAND USE TYPES IN SUBURBS OF TIANJIN
-
摘要: 选取了天津市城郊8个不同土地利用类型土壤(包括旱地、公园、林地、滩涂、水浇地、绿化带、居民区、荒地),共48个样本点,对天津不同土地利用类型土壤中抗生素含量、组成、分布特征及其影响因素进行研究。采用超高效液相色谱-质谱联用法(HPLC-MS/MS)检测了5类12种抗生素的残留水平,同时结合其土壤理化性质及微生物群落结构解析影响抗生素污染特征的关键因素。结果表明:抗生素总体检出浓度在(4.35~1.35)×103 μg/kg,总体浓度顺序四环素类(TCs)>磺胺类(SAs)>喹诺酮类(QNs)>大环内酯类(MLs)>β-内酰胺类(β-lactams),其中旱地土壤中抗生素含量显著高于其他土地利用类型土壤抗生素,主要与有机肥施用有关。不同土壤抗生素主成分分析(PCA)发现,旱地和公园土壤中抗生素的组成与其他土壤类型存在较为明显的差异,这与畜禽粪便施肥以及外源生活中抗生素的排放有关;环境因子与抗生素的冗余分析(RDA)结果显示:土壤环境因子[总氮(TN)、总磷(TP)、铜(Cu)、锌(Zn)、pH]对抗生素的组成有较强影响(P<0.05);微生物与抗生素的斯皮尔曼(Spearman)相关分析发现,浮霉菌属(Planctomyces)、酸性细菌_细菌_WX27(Acidobacteria_bacterium_WX27)、鞘脂单胞菌属(Sphingomonas)、芽孢杆菌属(Gemmatimona)、嗜热光合细菌(Roseiflexus)、类固醇杆菌(Steroidobacter)、溶杆菌属(Lysobacter)、硫化细菌(Thiobacillus)与抗生素相关性达到显著水平(P<0.05),其中微生物与四环素和喹诺酮类抗生素相关性较强。研究结果可为后续土壤抗生素的污染防治工作提供参考。Abstract: In this study, a total of 48 sample sites were selected from eight soils with different land use types (including dry land, park, woodland, beach, irrigated land, green belt, residential area and wasteland) in suburban areas of Tianjin, to study the content, composition, distribution characteristics and influencing factors of antibiotics in the soil in Tianjin. Ultra-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was used to detect the residual levels of 12 antibiotics in five categories. Meanwhile, the key factors affecting the pollution characteristics of antibiotics were analyzed by the physical and chemical properties of the soil and microbial community structure. The results showed that the concentration of antibiotics was detected in the range of (4.35~1.35)×103 μg/kg, in the general sequence of tetracyclines (TCs)>sulfonamides (SAs)>quinolones (QNs)>macrolides (MLs)>β-lactams, in which antibiotic content in dry land soil was significantly higher than the other soil, mainly related to organic fertilizer application. Principal component analysis (PCA) showed that the composition of antibiotics in the soil of the dry land and park was significantly different from the others, which was related to fertilization of livestock and poultry manure and the release of antibiotics in exogenous life. Redundant analysis (RDA) of environmental factors and antibiotics showed that soil environmental factors (total nitrogen (TN), total phosphorus (TP), copper (Cu), zinc (Zn), pH) had a strong influence on the composition of antibiotics (P<0.05). Spearman correlation between microorganisms and antibiotics showed that Planctomyce, Sphingomonas, Gemmatimona, Roseiflexus, Steroidobacter, Acidobacteria_bacterium_WX27, Lysobacter, Thiobacillus had significant correlations with antibiotics (P<0.05). Among them, microorganisms were strongly related to tetracycline and quinolone antibiotics. This study could provide a scientific basis for the prevention and control of soil antibiotic pollution.
-
Key words:
- land use type /
- antibiotics /
- spatial distribution /
- soil microorganisms
-
LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments:a review of lakes, China[J]. Science of the Total Environment, 2018, 627:1195-1208. SARMAH A K, MEYER M T, BOXALL A B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5):725-759. LIENERT J, BVRKI T, ESCHER B I.Reducing micropollutantswithsource control:substance flow analysis of 212 pharmaceuticals in faeces and urine[J]. Water Science and Technology, 2007, 56(5):87-96. FANG H, HAN Y L, YIN Y M, et al. Variations in dissipationrate,microbial function and antibiotic resistance due to repeatedintroductions of manure containing sulfadiazine and chlortetracycline to soil[J]. Chemosphere, 2014, 96:51-56. VASUDEVAN D, BRULAND G L, TORRANCE B S, et al. pH-dependentciprofloxacin sorption to soils:Interaction mechanisms andsoil factors influencing sorption[J]. Geoderma, 2009, 151(3):68-76. GUO J H, SELBY K, BOXALL A B A. Assessment of the risks of mixtures of major use veterinary antibiotics in European surface waters[J]. Environmental Science & Technology, 2016, 50(15):8282-8289. KUMAR K, GUPTA S C, BAIDOO S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality, 2005, 34(6):2082-2085. BOXALL A B, JOHNSON P, SMITH E J, et al.2006.Uptake of veterinary medicines from soils into plants[J].Journal of Agricultural and Food Chemistry,2006, 54(6):2288-2297. PHILLIPS I.Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data[J].Journal of Antimicrobial Chemotherapy, 2004, 54(1):28-52. CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments:a review of the European scenario[J]. Environment International, 2016, 94:736-757. HAMSCHER G, SCZESNY S, HOPER H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J].Analytical Chemistry, 2002, 74:1509-1518. JEMBA P K. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review[J]. Agriculture, Ecosystems and Environment, 2002, 93(1/2/3):267-278. LEAL R M P, FIGUEIRA R F, TORNISIELO V L, et al. Occurrence and sorption of fluoroquinolones in poultry litters and soils from Sao Paulo State, Brazil[J]. Science of the Total Environment, 2012, 432:344-349. HU X G, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010,158(9):2992-2998. ZHANG H B, ZHOU Y, HUANG Y J, et al. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures[J]. Chemosphere, 2016,152:229-237. 苏思慧,何江涛,杨蕾, 等.北京东南郊土壤剖面氟喹诺酮类抗生素分布特征[J]. 环境科学,2014,35(11):4257-4266. 朱秀辉, 曾巧云, 解启来, 等. 广州市北郊蔬菜基地土壤四环素类抗生素的残留及风险评估[J]. 农业环境科学学报, 2017,36(11):2257-2266. 陈海燕, 花日茂, 李学德, 等.不同类型菜地土壤中3种磺胺类抗生素污染特征研究[J]. 安徽农业科学, 2011, 39(23):14224-14226. 赵方凯,杨磊,乔敏,等.土壤中抗生素的环境行为及分布特征研究进展[J].土壤,2017, 49(3):428-436. WANG F H, QIAO M, SU J Q, et al.High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J].Environmental Science & Technology,2014, 48(16):9079-9085. ZHU Y G, REID B J, MEHARG A A, et al.Optimizing peri-urban ecosystems (PURE) to re-couple urban-rural symbiosis[J].Science of the Total Environment, 2017, 586:1085-1090. 刘国伟.长期施用生物有机肥对土壤理化性质影响的研究[D].北京:中国农业大学,2004. 陈桑琳,鲁文杰,杨鹏,等. 表层土壤重金属含量测定方法综述[J].科技创新导报,2014, 11(9):220. GAO L H, SHI Y L, LI W H, et al. Occurrence of antibiotics in eightsewage treatment plants in Beijing, China[J].Chemosphere,2012,86(6):665-671. HOU J, WAN W N, MAO D Q, et al. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides and nitrofurans in livestock manure and amended soils of northern China[J]. Environmental Science and Pollution Research,2015, 22(6):4545-4554. LI C, CHEN J Y, WANG J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases ofBeijing, China and an associated risk assessment[J]. Science of the Total Environment, 2015, 521/522:101-107. 李晓华. 规模化猪场粪污中典型抗生素归趋行为及抗性基因扩散特征研究[D].北京:中国农业科学院,2018. BRUCHET A, HOCHEREAU C, PICARD C, et al.Analysis of drugs and personal care products in French source and drinking waters:the analytical challenge and examples of application[J].Water Science & Technology, 2005,52(8):53-61. 王敏,唐景春.土壤中的抗生素污染及其生态毒性研究进展[J].农业环境科学学报, 2010, 29(增刊1):261-266. 管荷兰,于海凤,王嘉宇.氟喹诺酮类抗生素在土壤中的归趋及其生态毒性研究进展[J].生态学杂志,2012, 31(12):3228-3234. JI X L, SHEN Q H, LIU F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials,2012,235/236:178-185. LI Y X, ZHANG X L, LI W, et al. The residues andenvironmental risks of multiple veterinary antibiotics in animalfaeces[J]. Environmental Monitoring and Assessment, 2013, 185(3):2211-2220. WANG H, CHU Y X, FANG C R.Occurrence of veterinary antibiotics in swine manure from large-scale feedlots in Zhejiang Province, China[J].Bulletin of Environmental Contamination and Toxicology, 2017, 98(4):472-477. 潘霞, 陈励科, 卜元卿,等. 畜禽有机肥对典型蔬果地土壤剖面重金属与抗生素分布的影响[J]. 生态与农村环境学报, 2012, 28(5):518-525. ZHOU X, QIAO M, WANG F H, et al. Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil[J]. Environmental Science and Pollution Research, 2017, 24(1):701-710. 刘蓓,李艳霞,张雪莲,等. 兽药抗生素对土壤微生物群落的影响[J]. 生态毒理学报, 2013, 8(6):839-846. 贺德春,许振成,吴根义,等.四环素类抗生素的环境行为研究进展[J]. 动物医学进展, 2011,32(4):98-102. PARASCA O M, GHEǍ F, PNZARIU A, et al. Importance of sulfonamide moiety in current and future therapy[J]. Revista Medico-chirurgicala a Societatii de Medici Si Naturalisti din Iasi, 2013, 117(2):558-564. 沈群辉,冀秀玲, 傅淑珺, 等. 黄浦江水域抗生素及抗性基因污染初步研究[J]. 生态环境学报, 2012, 21(10):1717-1723. 代宇楠.典型抗生素的土壤吸附模型[D]. 大连:大连理工大学, 2018. GAO L H, SHI Y L, LI W H, et al. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China[J]. Environmental Science and Pollution Research, 2015, 22(15):11360-11371. ZHAO L, DONG Y H, WANG H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of The Total Environment, 2010, 408(5):1069-1075. KIM Y, LEE K B, CHOI K.Effect of runoff discharge on theenvironmental levels of 13 veterinary antibiotics:a case study ofHan River and Kyungahn Stream, South Korea[J].Marine Pollution Bulletin, 2016, 107(1):347-354. JENT J R,RYU H, TOLEDO-HERNANDEZ C, et al. Determining hot spots of fecal contamination in a tropical watershed by combining land-use information and meteorological data with source-specific assays[J]. Environmental Science & Technology, 2013, 47(11):5794-5802. 张涛,郭晓, 刘俊杰, 等. 江西梅江流域土壤中四环素类抗生素的含量及空间分布特征[J].环境科学学报, 2017, 37(4):1493-1501. AN J, CHEN H W, WEI S H, et al. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China[J]. Environmental Earth Sciences, 2015, 74(6):5077-5086. WANG Y J, SUN R J, XIAO A Y, et al. Phosphate affects the adsorption oftetracycline on two soils with different characteristics[J]. Geoderma, 2010, 156:237-242. OSTERMANN A, GAO J, WELP G, et al. Identification of soil contamination hotspots with veterinaryantibiotics using heavy metal concentrations and leaching data:a field study in China[J].Environmental Monitoring and Assessment, 2014, 186:7693-7707. 卢信, 罗佳, 高岩, 等.畜禽养殖废水中抗生素和重金属的污染效应及其修复研究进展[J].江苏农业学报, 2014, (3):671-681. PILS J R, LAIRD D A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environmental Science & Technology, 2007, 41:1928-1933. 荚德安. 土壤中四环素与铜的吸附行为及其影响因素研究[D]. 哈尔滨:哈尔滨工程大学, 2008. 康峤, 包思琪,王洪良, 等.溶解性有机质-四环素-Zn共存体系中土壤对四环素和Zn的吸附作用[J]. 科学技术与工程, 2016,16(14):69-73. 李宗宸, 魏群山, 罗专溪, 等. 水土比、pH和有机质对沉积物吸附四环素的复合影响[J]. 农业环境科学学报, 2017, 36(4):761-767. 张劲强,董元华. 诺氟沙星在4种土壤中的吸附-解吸特征[J].环境科学,2007, 28(9):2134-2140. 赵方凯, 杨磊, 李守娟, 等. 长三角典型城郊土壤抗生素空间分布的影响因素研究[J]. 环境科学学报, 2018,38(3):1163-1171. FANG H, HAN L X, CUI Y L, et al. Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments[J]. Science of the Total Environment, 2016, 572:1203-1212. 张树清, 张夫道, 刘秀梅, 等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学, 2006, 39(2):337-343. 王志强,张长青,王维新.土霉素降解菌的筛选及其降解特性研究[J].中国兽医科学, 2011, 419(5):536-540. 韩斯琴, 徐梅, 白震, 等. D2-4放线菌抗真菌病害活性成分研究[J].微生物学杂志, 2004, 24(1):8-10.
点击查看大图
计量
- 文章访问数: 172
- HTML全文浏览量: 16
- PDF下载量: 12
- 被引次数: 0