HETEROGENEOUS FENTON DEGRADATION OF BENZOTRIAZOLE IN WATER BY Fe/Cu/ZEOLITE CATALYST AT NEUTRAL pH VALUE
-
摘要: 采用溶胶-凝胶法制备Fe/Cu/沸石非均相Fenton催化剂,并利用XPS和SEM等技术进行了表征;优化了中性pH下催化降解水中苯并三唑的反应条件,并考察了材料的重复使用性能;讨论了催化氧化降解BTA的机理。结果表明,催化剂中Fe、Cu纳米粒子呈颗粒状均匀分布于沸石颗粒表面,主要成分为Fe2O3、Fe3O4和CuO。在中性pH条件下,苯并三唑降解的最佳条件为:H2O2浓度0.08 mol/L,催化剂用量0.41 g/L,反应时间43.6 min,且该催化剂稳定性最佳。催化降解过程中,Fe和Cu协同参与Fenton反应产生·OH,实现了污染物的高效去除。Abstract: The sol-gel method was used to prepare the Fe/Cu/zeolite catalyst for heterogeneous Fenton oxidation. The reaction conditions of catalytic degradation of benzotriazole in water at neutral pH were optimized, and the reusability of the material was investigated. Finally, the mechanism of catalytic oxidation degradation of BTA was discussed. The results showed that Fe and Cu nanoparticles in the catalyst were uniformly distributed on the surface of the zeolite particles, and the main components were Fe2O3, Fe3O4 and CuO. Under neutral pH conditions, the highest degradation rate of benzotriazole was achieved at the concentration of H2O2 0.08 mol/L, the catalyst dosage 0.41 g/L and the reaction time 43.6 min. During the catalytic degradation process, Fe and Cu participate in the Fenton reaction to generate ·OH radicals, and achieve efficient removal of pollutants.
-
Key words:
- heterogeneous Fenton /
- neutral ph /
- Fe/Cu bimetal /
- zeolite /
- benzotriazole
-
[1] LEE J E, KIM M K, LEE J Y, et al. Degradation kinetics and pathway of 1H-benzotriazole during UV/chlorination process[J]. Chemical Engineering Journal, 2019, 359:1502-1508. [2] RICHARDSON S D, TERNES T A, VAN D P. Water analysis:emerging contaminants and current issues[J]. Analytical Chemistry, 2018, 90(1):398-428. [3] SONG S J, RUAN T, WANG T, et al. Occurrence and removal of benzotriazole ultraviolet stabilizers in a wastewater treatment plant in China[J]. Environmental Science:Processes & Impacts, 2014, 16(5):1076-1082. [4] HART D S J, DAVIS L C, ERICKSON L E, et al. Sorption and partitioning parameters of benzotriazole compounds[J]. Microchemical Journal, 2004, 77(1):9-17. [5] 张雪. 紫外和紫外/H2O2去除苯并三唑效能研究[D]. 哈尔滨:哈尔滨工业大学, 2008. [6] 边康玲. 超声-紫外协同强化双氧水降解苯并三氮唑的研究[D]. 杭州:浙江工业大学, 2014. [7] DING Y B, YANG C Z, ZHU L H, et al. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole[J]. Journal of Hazardous Materials, 2010, 175(1/2/3):96-103. [8] WANG J, LIU C, LI J S, et al. In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst[J]. Applied Catalysis B:Environmental, 2017, 207:316-325. [9] WANG Y B, ZHAO H Y, ZHAO G H. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2015, 164:396-406. [10] 张武,纪妍妍,彭涵,等. FeY型分子筛的高效制备及非均相Fenton催化降解性能[J].高等学校化学学报,2018,39(9):1985-1992. [11] NAVALON S, ALVARO M, GARCIA H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):1-26. [12] CAO J L, WU Y H, JIN Y P, et al. Response surface methodology approach for optimization of the removal of chromium(Ⅵ) by NH2-MCM-41[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3):860-868. [13] 王艳,汪建飞,李孝良,等. Fe/沸石对偶氮染料活性黑5的催化降解[J]. 环境工程学报, 2016, 10(8):4177-4183. [14] 刘萌,吴志杰,潘涛.沸石分子筛酸性质表征方法研究进展[J]. 应用化学, 2020, 37(1):1-15. [15] PANDA N, SAHOO H, MOHAPATRA S. Decolourization of methyl orange using Fenton-like mesoporous Fe2O3-SiO2 composite[J]. Journal of Hazardous Materials, 2011, 185(1):359-365. [16] LAM F L Y, YIP A C K, HU X J. Copper/MCM-41 as a highly stable and pH-insensitive heterogeneous photo-Fenton-like catalytic material for the abatement of organic wastewater[J]. Industrial & Engineering Chemistry Research, 2007, 46(10):3328-3333. [17] HUANG Z P, CHEN Z P, CHEN Y C. Synergistic effects in iron-copper bimetal doped mesoporous γ-Al2O3 for Fenton-like oxidation of 4-chlorophenol structure, composition, electrochemical behaviors and catalytic performance[J]. Chemosphere, 2018,203:442-449. [18] AMIR M, ZHI C, FARIBORZ H, et al. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes:a review[J]. Chemosphere, 2017, 174:665-688. [19] SUN J H, SUN S P, FAN M H, et al. Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process[J]. Journal of Hazardous Materials, 2008, 153(1/2):187-193. [20] ARSLAN-ALATON I, TURELI G, OLMEZ-HANCI T. Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes:optimization by response surface methodology[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 202(2/3):142-153. [21] LYU L, ZHANG L L, HU C. Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres[J]. Chemical Engineering Journal, 2015, 274:298-306.
点击查看大图
计量
- 文章访问数: 209
- HTML全文浏览量: 22
- PDF下载量: 10
- 被引次数: 0