ADSORPTION PERFORMANCE AND MECHANISM OF NATURAL PYRRHOTITE FOR As (Ⅲ) IN WATER
-
摘要: 砷是地下水中最常见的污染物之一,过量摄入会严重危害人体健康。含铁矿物可以高效去除水中的As。以天然磁黄铁矿为As(Ⅲ)吸附剂,研究了吸附过程中的动力学、等温线和热力学,以及pH、无机阴离子对As(Ⅲ)吸附去除的影响。结果表明:磁黄铁矿对As(Ⅲ)的吸附在48 h可达到平衡;吸附过程符合Langmuir等温模型,在As(Ⅲ)初始浓度为1~200 mg/L,23~33 ℃下,天然磁黄铁矿对As(Ⅲ)的饱和吸附量(以As计)为3.5~4.5 mg/g;吸附量随着温度升高而增大,吸附过程表现为自发吸热熵增反应;在pH为7时,吸附效果达到最佳去除率(95.51±0.30)%;PO43-对吸附有明显的抑制作用。X射线电子能谱分析表明,吸附过程包括物理吸附和化学吸附,即包括矿物自身缺陷结构导致的位点吸引、As和S配位离子交换及氧化还原产物羟基氧化铁的配位沉淀。表明利用磁黄铁矿吸附As(Ⅲ),简化了传统材料和方法上将As(Ⅲ)氧化为As(Ⅴ)的烦琐步骤,有较好应用前景。Abstract: As one of the most common pollutants in groundwater, excessive arsenic intake will seriously threaten human health. The kinetics, isotherm and thermodynamics in the adsorption process were analyzed, and the effects of pH and inorganic anions on the adsorption of As(Ⅲ) in water by natural pyrrhotite were studied. It was found that adsorption of As(Ⅲ) by pyrrhotite reached equilibrium in 48 h. Adsorption processes followed the Langmuir isothermal model, in the range of 1~200 mg/L for initial concentration, and the saturated adsorption capacity of As(Ⅲ) on natural pyrrhotite from 23℃ to 33℃ was 3.5~4.5 mg/g (by As element). The adsorption capacity increased with the increase of temperature, and the adsorption process was a spontaneous endothermic reaction. And the best effect occurred when pH was 7,where the removal rate of As(Ⅲ) was (95.51±0.30)%. PO43- had obvious inhibition on the adsorption. X-ray photoelectron spectroscopy analysis showed that the adsorption involved physical adsorption and chemical adsorption, including site attraction caused by the defect structure of minerals, As and S coordination ion exchange, and the coordination precipitation of iron hydroxide oxide. The results showed that the adsorption of As(Ⅲ) by pyrrhotite simplified the tedious steps of the oxidation of As(Ⅲ) to As(Ⅴ) by materials and methods, and had good prospect of utilization.
-
Key words:
- adsorption /
- pyrrhotite /
- arsenite As(Ⅲ) /
- X-ray photo electron spectroscopy
-
[1] SHARMA M K, CHOUBEY V K. Groundwater pollution:an overview[J]. Social Science Electronic Publishing, 2011,3(4):64-76. [2] WANG W Y, YANG L S, HOU S F, et al. Prevention of endemic arsenism with selenium[J]. Current Science, 2001, 81(9):1215-1218. [3] NG J C, WANG J, SHRAIM A. A global health problem caused by arsenic from natural sources[J]. Chemosphere, 2003, 52(9):1353-1359. [4] CECILIA G M, BLANES P S, BUCHHAMER E E, et al. Assessment of heavy metals concentration in arsenic contaminated groundwater of the Chaco Plain, Argentina[J]. ISRN Environmental Chemistry, 2013,22/23:1-12. [5] FAROOQ S H, CHANDRASEKHARAM D, NORRA S, et al. Temporal variations in arsenic concentration in the groundwater of Murshidabad district, west Bengal, India[J]. Environmental Earth Sciences, 2009, 62(2):223-232. [6] ROMIĆ Z, HABUDA-STANIĆ M, BRANKICAKALAJDŽIĆ, et al. Arsenic distribution, concentration and speciation in groundwater of the Osijek area, eastern Croatia[J]. Applied Geochemistry, 2011, 26(1):37-44. [7] 何薪, 马腾, 王焰新, 等. 内蒙古河套平原高砷地下水赋存环境特征[J]. 中国地质, 2010, 37(3):781-788. [8] WHO. Guidelines for drinking-water quality:fourth edition incorporating the frst addendum[R]. Geneva, 2017. [9] 陈桂霞, 胡承志, 朱灵峰, 等. 铝盐混凝除砷影响因素及机制研究[J]. 环境科学, 2013, 34(4):164-169. [10] MENG C Q, MAO Q M, LUO L, et al. Performance and mechanism of As(Ⅲ) removal from water using Fe-Al bimetallic material[J]. Separation and Purification Technology, 2018, 191:314-321. [11] NIAZI N K, BURTON E D. Arsenic sorption to nanoparticulate mackinawite (FeS):an examination of phosphate competition[J]. Environmental Pollution, 2016, 218:111-117. [12] BAKSHI S, BANIK C, RATHKE S J, et al. Arsenic sorption on zero-valent iron-biochar complexes[J]. Water Research, 2018, 137:153-163. [13] 王建燕, 张传巧, 陈静, 等. 新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J]. 环境科学学报, 2019, 39(8):2575-2585. [14] SHAN C, TONG M P. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide[J]. Water Research, 2013, 47(10):3411-3421. [15] 邵金秋, 温其谦, 阎秀兰, 等. 天然含铁矿物对砷的吸附效果及机制[J]. 环境科学, 2019, 40(9):4072-4080. [16] 郭乐, 王玉霞, 刘玉灿, 等. 紫外光协同TiCl4去除水中As(Ⅲ)效能及动力学[J]. 水处理技术, 2019, 45(1):75-79. [17] 朱小丽, 刘红, 范先媛, 等. Fenton氧化-絮凝耦合去除水中As(Ⅲ)的机理[J]. 环境工程学报, 2012,6(10):3603-3607. [18] 李旺旺, 毕亚凡, 孙侃. 硫铁矿制酸过程的废稀酸中砷及重金属去除研究[J]. 工业用水与废水, 2015, 46(1):32-35. [19] LI R H, KELLY C, KEEGAN R, et al. Phosphorus removal from wastewater using natural pyrrhotite[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 427:13-18. [20] WOLTHERS M, BUTLER I B, RICKARD D. Influence of arsenic on iron sulfide transformations[J]. Chemical Geology, 2007, 236(3/4):217-227. [21] 赵凯, 郭华明, 李媛, 等. 天然菱铁矿改性及强化除砷研究[J]. 环境科学, 2012, 33(2):459-468. [22] BHATTACHARYYA K G, SHARMA A. Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica) leaf powder[J]. Dyes and Pigments, 2005, 65(1):51-59. [23] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465. [24] LATA S, PRABHAKAR R, ADAK A, et al. As(Ⅴ) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis[J]. Environmental Science & Pollution Research, 2019, 26(5):32175-32188. [25] TANGDE V M, PRAJAPATI S S, MANDAL B B, et al. Study of kinetics and thermodynamics of removal of phosphate from aqueous solution using activated red mud[J]. International Journal of Environmental Research, 2017, 11(1):39-47. [26] 赵振国. 吸附作用应用原理[M]. 北京:化学工业出版社, 2005. [27] 郑景华, 王宇, 王聪, 等. 磁性生物炭对As(Ⅲ)的吸附行为研究[J]. 离子交换与吸附, 2018, 34(2):116-126. [28] AMMENDOLA P, RAGANATI F, CHIRONE R. CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed:thermodynamics and kinetics[J]. Chemical Engineering Journal, 2017, 322:302-313. [29] YOSHII K, KOTANI T, MURAYAMA N, et al. Oxidative adsorption of inorganic arsenite (As(Ⅲ)) with γ-Al2O3 and MnO2[J]. Technology Reports of Kansai University, 2014, 56:57-64. [30] 纪冬丽, 孟凡生, 王业耀, 等. 废铁屑吸附水中As(Ⅲ)试验研究[J]. 环境工程, 2016, 34(增刊1):66-71. [31] HUSSAIN S, AZIZ H A, ISA M H, et al. Orthophosphate removal from domestic wastewater using limestone and granular activated carbon[J]. Desalination, 2011, 271(1/2/3):265-272. [32] KONG Y L, KANG J, SHEN J M, et al. Influence of humic acid on the removal of arsenate and arsenic by ferric chloride:effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes[J]. Environmental Science & Pollution Research, 2017, 24(3):2381-2393. [33] 刘卓, 张小梅, 肖才林, 等. 利用天然磁黄铁矿去除水中As(Ⅴ)的研究[J]. 环境科学学报, 2016, 36(10):3701-3708. [34] SCHAUFUB A, NESBITT H W, KARTIO I. Reactivity of surface chemical states on fractured pyrite[J]. Surface Science, 1998, 411(3):321-328. [35] ROMANCHENKO, ALEXANDER, LIKHATSKI, et al. X-ray photoelectron spectroscopy (XPS) study of the products formed on sulfide minerals upon the interaction with aqueous platinum (Ⅳ) chloride complexes[J]. Minerals, 2018, 8(12):578. [36] DONATO P D, MUSTIN C, BENOIT R, et al. Spatial distribution of iron and sulphur species on the surface of pyrite[J]. Applied Surface Science, 1993, 68(1):81-93. [37] BERA S, PRINCE A A M, VELMURUGAN S, et al. Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS[J]. Journal of Materials Science, 2001, 36(22):5379-5384. [38] ABDELSAMAD H S, WATSON P R. An XPS study of the adsorption of chromate on goethite (α-FeOOH)[J]. Applied Surface Science, 1997, 108(3):371-377. [39] DRAGOSLAV, BUDIMIROVIC', ZLATE, et al. Efficient As(Ⅴ) removal by α-FeOOH and α-FeOOH/α-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes[J]. Chemical Engineering Research and Design, 2017, 119:75-86. [40] REN D S, WANG W, Li Y C, et al. Studies of oxidation on GaAs (100) surface by XPS[J]. Chinese Journal of Chemical Physics, 2004, 17(1):87-90. [41] GROSVENOR A P, CAVELL R G, MAR A. Next-nearest neighbour contributions to the XPS binding energies and XANES absorption energies of P and As in transition-metal arsenide phosphides MAs1-yP<i>y having the MnP-type structure[J]. Journal of Solid State Chemistry, 2008, 181(10):2549-2558. [42] 孙天一, 赵志伟, 时文歆, 等. 磁性CeO2-Fe3O4复合材料光催化/吸附去除水中As(Ⅲ)[J]. 环境科学学报, 2018, 38(8):3108-3117. [43] SKINNER W M, NESBITT H W, PRATT A R. XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10):2259-2263.
点击查看大图
计量
- 文章访问数: 238
- HTML全文浏览量: 49
- PDF下载量: 14
- 被引次数: 0