ANALYSIS ON RUNOFF COEFFICIENTS OF DIFFERENT IMPERVIOUS UNDERLYING SURFACES BASED ON A NOVEL RUNOFF COLLECTION METHOD FOR CITIES
-
摘要: 通过构建人工模拟降雨与下垫面径流收集体系,解析城市不同非渗透下垫面径流系数。下垫面径流系数分析结果显示:城市道路平均径流系数为0.82,低于其他非渗透下垫面(0.87~0.89),这主要是由于沥青材质的城市道路具有更强的渗透性,其粗孔隙对水流具有较强的吸收能力。降雨历时和降雨强度是影响下垫面径流系数的关键因素。降雨历时对6种非渗透下垫面径流系数的影响均很显著,尤其是降雨初始20 min的时段,径流系数快速上升,最多超出起始4倍以上;降雨强度的增加势必引起产流时间缩短,加剧其对径流系数的影响,也使其与径流系数的相关性显著高于降雨历时。Abstract: By constructing the artificial rainfall system and the collection system of underlying surface runoff, the runoff coefficients of different impervious underlying surface in the city was analyzed. The analysis results of runoff coefficients of underlying surface showed that the average runoff coefficient of urban road was 0.82, which was lower than that of other the non permeable underlying surface (0.87~0.89). This was mainly due to the stronger permeability of urban road made of asphalt material and the strong absorption capacity of its coarse pores to water flow. Rainfall duration and intensity were the key factors affecting runoff coefficient of the underlying surface. The influence of rainfall duration on runoff coefficient of six non permeable underlying surfaces was significant, especially in the initial 20 minutes of rainfall, and the runoff coefficient rise rapidly, which was more than 4 times of the initial value at most; the increase of rainfall intensity was bound to shorten the runoff production time, intensify its impact on runoff coefficient, and make its correlation with runoff coefficient significantly higher than rainfall duration.
-
Key words:
- urban /
- impervious underlying surface /
- runoff coefficient /
- runoff collection /
- artificial rainfall
-
[1] 唐宁远,车伍,潘国庆. 城市雨洪控制利用的雨水径流系数分析[J]. 中国给水排水,2009,25(22):4-8. [2] BLACKWELL M S A, HOGAN D V, MALTBY E. The use of conventionally and alternatively located buffer zones for the removal of nitrate from diffuse agricultural run-off[J]. Water Science and Technology, 1999,39(12):157-164. [3] DELETIC A, MAKSIMOVIC C. Evaluation of Water Quality Factors in Storm Runoff from Paved Areas[J]. Journal of Environmental Engineering, 1998,124(9):869-879. [4] DILKS D W, HELFAND J S, BIERMAN JR V J, et al. Field application of a steady-state mass balance model for hydrophobic organic chemicals in an estuarine system[J]. Water Science & Technology, 1993,28(8/9):263-271. [5] SANSALONE J, KORAN J, SMITHSON J, et al. Physical characteristics of urban roadway solids transported during rain events[J]. Journal of Environmental Engineering, 1998,124(5):427-440. [6] 袁爱萍. 美国人工降雨模拟设备的引进与应用[J]. 北京水利,2004(6):36-37. [7] 吴晓丹. 上海中心城区暴雨积水机理分析[D]. 上海:华东师范大学,2012. [8] 刘兰岚. 上海市中心城区土地利用变化对径流的影响及其水环境效应研究[D]. 上海:华东师范大学,2007. [9] SEN Z K. Instantaneous runoff coefficient variation and peak discharge estimation model[J]. Journal of Hydrologic Engineering, 2008,13(4):270-277. [10] 高小梅,李兆麟,贾雪,等. 人工模拟降雨装置的研制与应用[J]. 辐射防护,2000,20(2):86-90. [11] 陈文亮,唐克丽. SR型野外人工模拟降雨装置[J]. 水土保持研究,2000,7(4):106-110. [12] 武晟. 西安市降雨特性分析和城市下垫面产汇流特性实验研究[D]. 西安:西安理工大学,2004. [13] 李红,傅智. 水泥混凝土路面与沥青路面粗集料技术指标的对比研究[J]. 公路,2005(11):168-172. [14] 王小梅. 北京地区街尘-径流污染特征及潜在污染负荷估算[D]. 哈尔滨:东北林业大学,2011. [15] 郭禹含,王中根,姜爱华,等. 济南主城区不透水地表分布分析及其水文效应[J]. 南水北调与水利科技,2020,87-96. [16] 王萌萌,刘文龙,申红彬. 城市不透水地表降雨径流系数变化规律分析[J]. 山东水利,2019(9):31-33. [17] 邵崴,潘文斌. 城市不透水面与降雨径流关系研究[J]. 亚热带资源与环境学报,2012,7(4):20-27.
点击查看大图
计量
- 文章访问数: 191
- HTML全文浏览量: 19
- PDF下载量: 3
- 被引次数: 0