EFFECTS OF NITROGEN AND PHOSPHORUS PRECURSORS ON GAS PRODUCTION EFFICIENCY OF PHOSPHATE REDUCTION SYSTEMS
-
摘要: 实验用泥取自污水处理厂,经培养驯化为具有磷酸盐还原功能的厌氧活性污泥,通过调整不同磷源(大豆卵磷脂、骨粉、六偏磷酸钠、磷酸氢二钾、次磷酸钠、亚磷酸钠)、氮源(氯化铵、蛋白胨)及氮磷配比,考察磷化氢产气效能及磷酸盐去除率。结果显示:所选的磷源及氮源均能使磷酸盐还原系统产生磷化氢气体,说明磷酸盐还原系统对各种形态氮磷化合物的适应能力较强,其中单种磷源产气量最大的为无机磷次磷酸钠,以大豆卵磷脂为代表的有机磷产气量最小,添加骨粉和次磷酸钠对磷酸盐还原系统的产气量增加有促进作用,无机氮源氯化铵为氮源的产气量较大,最佳氮磷比为4:1,以蛋白胨为氮源时的最佳氮磷比为4:1,这2种氮源的混合对磷化氢气体产生具有促进作用。Abstract: The experimental sludge, which was taken from a sewage treatment plant, was domesticated into anaerobic activated sludge with phosphate reduction function through cultivation. By adjusting different phosphorus sources (soybean lecithin, bone meal, sodium hexametaphosphate, dipotassium hydrogen phosphate, sodium hypophosphite and sodium phosphite), nitrogen source (ammonium chloride, peptone) and N/P ratio, the gas production efficiency of phosphine and removal rate of phosphate were measured in this research. The results showed that both the phosphorus source and nitrogen source used in this experiment could produce phosphine gas in the phosphate reduction system (PRS), which indicated that the PRS had a good adaptability to various nitrogen and phosphorus compounds. In addition, the inorganic phosphorous sodium as the single phosphorus source, had the largest gas production and the organic phosphorus represented by soybean lecithin produced the least amount of gas. The addition of bone meal and sodium hypophosphite could promote the increase of gas production in PRS. What's more, the inorganic nitrogen ammonium chloride as a nitrogen source, had a large gas production with the optimum ratio of nitrogen to phosphorus of 4:1, while the ratio was also 4:1 when peptone was used as nitrogen source. The mixing of these two nitrogen sources could promote the production of phosphine.
-
Key words:
- phosphate reducing /
- phosphorus source /
- nitrogen source /
- N/P ratio
-
[1] DÉVAI I, FELFÖLDY L, WITTNER I, et al. Detection of phosphine:new aspects of the phosphorus cycle in the hydrosphere[J]. Nature,1988,333(6171):343-345. [2] IVERSON W P. Research on the mechanisms of anaerobic corrosion[J].International Biodeterioration & Biodegradation, 2001,47(2):63-70. [3] ROELS J, HUYGHE G, VERSTRAETE W. Microbially mediated phosphine emission[J]. Science of the Total Environment, 2005,338(3):253-265. [4] 王冰,李婷,李佳妮,等,磷酸盐还原系统除磷机理的研究进展[J].辽宁化工,2018,47(2):178-180. [5] 孙亮,荣宏伟,韦伟,等.无机磷源及酶活性与厌氧污泥产磷化氢的关系[J].中国给水排水,2017,33(1):110-113. [6] 刘潇锋,徐丽,马兴冠,磷酸盐还原菌的驯化分离及其生长与除磷效能的研究[D].沈阳:沈阳建筑大学,2018. [7] 刘志培,贾省芬,王保军,等,环境中磷化氢的含量差异及其影响因素[J].环境科学学报,2004,24(5):852-857. [8] 曹海峰,刘季昂,庄亚辉,等,环境中磷化氢的源及厌氧条件下前体物类型的研究[J].中国科学(化学),2000,30(1):63-68. [9] 耿金菊,乔松,张蕤,等,自然界磷化氢前体物类型的研究[J].南京大学学报(自然科学版),2007,43(4):338-344. [10] 罗秋容.厌氧除磷过程的影响因素和功能菌的筛选[J].能源与节能,2013(4):64-66. [11] 朱叶青,吕娟,杜艳,等,离子色谱法同时测定蛋白胨中葡萄糖、果糖、蔗糖、麦芽糖、乳糖含量[J].食品安全质量检测学报,2019,10(14):4624-4628. [12] 张寰,高璐瑶,郭枝,等,电感耦合等离子体质谱法测定蛋白胨4种微量元素[J].食品安全质量检测学报,2019,10(17)5766-5772. [13] 国家环境保护总局《水和废水监测分析方法》编委会.《水和废水监测分析方法》[M].4版,北京:中国环境科学出版社,2002. [14] 王怡,曲鹏程,郑淑健,等. 除磷系统剩余污泥中营养元素的快速释放及回收[J]. 中国给水排水,2012,28(11):29-32. [15] 徐丽,王金倩,魏文涛. 磷源及环境因子对磷酸盐还原菌除磷效能的影响探究[J]. 环境污染与防治,2018,40(6):652-656,661. [16] 李茵,罗翠,CHRÓST R J. 城市污水生物处理系统中微生物酶的活性及其分布[J].环境污染与防治,2007,29(5):333-335. [17] 曹建平,张朝升,赵丽敏,等.无机磷源及酶活性与厌氧污泥产磷化氢的关系[J].中国给水排水,2017,33(1):110-113. [18] 苏瑞景. 剩余污泥酶法水解制备蛋白质、氨基酸及其机理研究[D].上海:东华大学,2013.
点击查看大图
计量
- 文章访问数: 166
- HTML全文浏览量: 12
- PDF下载量: 4
- 被引次数: 0