THE PROPERTY OF URINE IN COLLECTION AND STORAGE PROCESS FOR RESOURCE UTILIZATION OF URINE
-
摘要: 尿液收集和储存过程中,其营养元素的变化会受到多种环境因素和生物活动的影响,基于源分离厕所理念,模拟尿液收集过程,检测了新鲜尿液收储过程中的性质变化,测定了实验过程中3批次新鲜尿液以及1份经密封储存>60 d的陈尿的各项关键指标。结果表明:不同尿液性质不同,陈尿ρ(TN)为7.6 g/L,ρ(TP)为286 mg/L。实验用新鲜尿液的ρ(TN)较低,为5~7 g/L,而ρ(TP)为371~843 mg/L。尿液稀释储存不会抑制尿液的水解,但在高稀释因子下,具有加快尿液水解的趋势;温度对于尿液的水解影响非常大,35 ℃时极大加快了尿液的水解,4 ℃储存能够在30 d内抑制尿液的水解;敞口与封口不会影响尿液的水解速率,但是敞口储存30 d,尿液的TN挥发损失>75%。模拟家庭式源分离厕所30 d的收储过程,发现在30 d的收储期结束后,尿液的水解程度达到82%。结合中国农村厕所革命与源分离尿液资源化相关技术,提出了源分离尿液的资源化过程应结合尿液性质、中国地域特点、利用目的等因素。Abstract: Urine resource utilization is an important direction in the technology related to the rural toilet revolution. Because urine is rich in nitrogen, phosphorus, and potassium, its efficient use becoming a research hot topic. The changes of nutrient elements during urine collection and storage will be affected by a variety of environmental factors and biological activities. Based on the concept of source separated toilet, this research simulated the urine collection process, detected the changes of urine properties during collection and storage process, and measured the key indicators of three batches of fresh urine and one piece of the aged urine sealed for more than 60 days used in this experiment. Different urine had different constituent. In aged urine the ρ(TN) and ρ(TP) were 7.6 g/L and 286 mg/L respectively. The ρ(TN) and ρ(TP) of the fresh urine used in this experiment were lower than the aged urine's and were 5~7 g/L and 371~843 mg/L respectively. Dilution could not inhibit urine hydrolysis, but under high dilution factors, it had a tendency to accelerate urine hydrolysis. Temperature had a great effect on urine hydrolysis. Storage at 35℃ greatly accelerated the hydrolysis of urine. Storage at 4℃ could inhibit the hydrolysis of urine within 30 days; open and seal would not affect the hydrolysis rate of urine, but open storage for 30 days, TN content lost by more than 75% due to volatilization. The 30 days' collection and storage process of the home-type source separation toilet was simulated. It was found that after the 30 days' collection and storage period, the urine hydrolysis rate reached 82%. Combining China's rural toilet revolution with related technologies of source separated urine, we proposed that urine recycling should be combined with the characteristics of urine, regional characteristic of China and the purpose of utilization. The study could provide basic parameters and design references for the urine resource utilization of source-separated toilets.
-
Key words:
- urine /
- source separated /
- hydrolysis /
- storage /
- resourcing
-
[1] RANDALL D G, NAIDOO V. Urine:the liquid gold of wastewater[J]. Journal of Environmental Chemical Engineering, 2018, 6(2):2627-2635. [2] WALD C. The new economy of excrement[J]. Nature, 2017, 549(7671):146-148. [3] MAURER M, PRONK W, LARSEN T A. Treatment processes for source-separated urine[J]. Water Research, 2006, 40(17):3151-3166. [4] HOGLUND C, STENSTROM T A, JONSSON H, et al. Evaluation of faecal contamination and microbial die-off in urine separating sewage systems[J]. Water Science and Technology, 1998, 38(6):17-25. [5] 徐康宁, 谢淘, 王湘徽, 等. 尿液废水氨化过程的控制措施研究[J]. 中国给水排水. 2014, 30(19):19-23. [6] 曾俊钦, 邱春生, 孙力平, 等. 储存控制条件对尿液氮磷的影响[J].环境工程学报. 2016, 10(10):5605-5610. [7] RANDALL D G, KRÄHENBVHL M, KÖPPING I, et al. A novel approach for stabilizing fresh urine by calcium hydroxide addition[J]. Water Research, 2016, 95:361-369. [8] ETTER B, TILLEY E, KHADKA R, et al. Low-cost struvite production using source-separated urine in Nepal[J]. Water Research, 2011, 45(2):852-862. [9] XU K N, LI J Y, ZHENG M, et al. The precipitation of magnesium potassium phosphate hexahydrate for P and K recovery from synthetic urine[J]. Water Research, 2015, 80:71-79. [10] PRADHAN S K, MIKOLA A, VAHALA R. Nitrogen and phosphorus harvesting from human urine using a stripping, absorption, and precipitation process[J]. Environmental Science & Technology, 2017, 51(9):5165-5171. [11] WEI S P, VAN ROSSUM F, VAN DE POL G J, et al. Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing:a pilot study[J]. Chemosphere, 2018, 212:1030-1037. [12] TARPEH W A, UDERT K M, NELSON K L. Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine[J]. Environmental Science & Technology, 2017, 51(4):2373-2381. [13] 刘乾亮, 刘彩虹,马军, 等.正渗透膜处理源分离尿液效能与工艺运行特性[J].中国给水排水.2016, 32(9):16-19. [14] TARPEH W A, BARAZESH J M, CATH T Y, et al. Electrochemical stripping to recover nitrogen from source-separated urine[J]. Environmental Science & Technology, 2018, 52(3):1453-1460. [15] CHRISTIAENS M E R, DE PAEPE J, ILGRANDE C, et al. Urine nitrification with a synthetic microbial community[J]. Systematic and Applied Microbiology, 2019, 42(6):126021. [16] VINNERÅS B, NORDIN A, NIWAGABA C, et al. Inactivation of bacteria and viruses in human urine depending on temperature and dilution rate[J]. Water Research, 2008, 42(15):4067-4074. [17] 顾霖, 吴德礼, 樊金红. 农村生活污染综合治理模式与技术路线探讨[J].环境工程. 2016, 34(10):113-117. [18] KIRCHMANN H, PETTERSSON S. Human urine-chemical composition and fertilizer use efficiency[J]. Fertilizer Research, 1994, 40(2):149-154. [19] 高振超. 源分离尿液的氮磷资源化与处理技术研究[D].北京:北京交通大学, 2018. [20] CHIPAKO T L, RANDALL D G. Urine treatment technologies and the importance of pH[J]. Journal of Environmental Chemical Engineering, 2020, 8(1):103622. [21] YE Y Y, NGO H H, GUO W S, et al. Insight into chemical phosphate recovery from municipal wastewater[J]. Science of the Total Environment, 2017, 576:159-171. [22] CAO X D, HARRIS W. Carbonate and magnesium interactive effect on calcium phosphate precipitation[J]. Environmental Science & Technology, 2008, 42(2):436-442. [23] TUN L L, JEONG D, JEONG S, et al. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation[J]. Journal of Membrane Science, 2016, 512:13-20. [24] ZHANG C Y, MA J X, SONG J K, et al. Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system[J]. Environmental Science & Technology, 2018, 52(24):14275-14285. [25] DE PAEPE J, DE PRYCK L, VERLIEFDE A R D, et al. Electrochemically induced precipitation enables fresh urine stabilization and facilitates source separation[J]. Environmental Science & Technology, 2020, 54(6):3618-3627. [26] CHO K, HOFFMANN M R. Urea degradation by electrochemically generated reactive chlorine species:products and reaction pathways[J]. Environmental Science & Technology, 2014, 48(19):11504-11511. [27] VOLPIN F, HEO H, HASAN J M A, et al. Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis[J]. Water Research, 2019, 150:47-55. [28] BECKINGHAUSEN A, ODLARE M, THORIN E, et al. From removal to recovery:an evaluation of nitrogen recovery techniques from wastewater[J]. Applied Energy, 2020, 263:114616.
点击查看大图
计量
- 文章访问数: 225
- HTML全文浏览量: 21
- PDF下载量: 12
- 被引次数: 0