CHARACTERISTICS AND SOURCE ANALYSIS OF WATER-SOLUBLE ION POLLUTION IN ATMOSPHERIC DUSTFALL IN WUHAN UNIVERSITIES
-
摘要: 于2017年11月采集武汉高校大气降尘样品106个,采用离子色谱仪分析样品中9种水溶性离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)的含量,用相关性分析和比值分析法解析其污染特征,用PCA-MLR模型初步探讨其来源及贡献率。结果表明:武汉高校降尘中主要水溶性离子为Ca2+、SO42-、NO3-,平均浓度顺序为Ca2+>SO42->NO3->K+>Na+>Cl->Mg2+>NH4+>F-,且F-、Cl-、NO3-、SO42-、Na+、K+、Mg2+、Ca2+分布存在明显的空间质异性。m(NO3-)/m(SO42-)为0.28,以固定源污染为主;降尘样品总体呈碱性。9种可溶性离子主要以NaCl、KCl、MgCl2、Mg(NO3)2、MgSO4、Ca(NO3)2、CaSO4等形式存在,主要来源于土壤/交通混合源、燃烧源、工业源,三者贡献率分别为8%、12%、80%。Abstract: There were 106 dustfall samples collected from Wuhan universities during November 2017. Nine types of water-soluble ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were analyzed by ion chromatography. Correlation analysis and ratio analysis were used to analyze the pollution characteristics, and the PCA-MLR model was used to discuss its source and contribution rate. The results showed that the main water-soluble ions in dust reduction in Wuhan universities were Ca2+, SO42- and NO3-, and the average concentration order was Ca2+>SO42->NO3->K+>Na+>Cl->Mg2+>NH4+>F-. There were obvious spatial qualitative differences in the distribution of F-, Cl-, NO3-, SO42-, Na+, K+, Mg2+ and Ca2+. The mass ratio of NO3-/SO42- was 0.28, which was dominated by fixed-source pollution; the dust-reducing samples were generally alkaline. Nine types of soluble ions existed mainly in forms of NaCl, KCl, MgCl2, Mg (NO3)2, MgSO4, Ca(NO3)2, CaSO4, etc., mainly from soil/transport mixed sources, combustion sources, industrial source, and their contribution rates were 8%, 12% and 80%, respectively.
-
Key words:
- universities /
- dustfall /
- water-soluble ions /
- pollution characteristics /
- sources
-
[1] 熊秋林, 赵文吉, 郭逍宇, 等. 北京城区冬季降尘微量元素分布特征及来源分析[J]. 环境科学, 2015,36(8):2735-2742. [2] TSAI Y I, KUO S C, YOUNG L H, et al. Atmospheric dry plus wet deposition and wet-only deposition of dicarboxylic acids and inorganic compounds in a coastal suburban environment[J]. Atmospheric Environment, 2014,89:696-706. [3] 王玉荧, 张六一, 杨复沫, 等. 三峡库区腹地秋末冬初大气干湿沉降化学组成特征[J]. 环境科学导刊, 2018,37(4):34-39. [4] PAN Y P, WANG Y S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China[J]. Atmospheric Chemistry and Physics, 2015,15(2):951-972. [5] DUAN L, YU Q, ZHANG Q, et al. Acid deposition in Asia:emissions, deposition, and ecosystem effects[J]. Atmospheric Environment, 2016,146:55-69. [6] 刘章现, 王国贞, 郭瑞, 等. 河南省平顶山市大气降尘的化学特征及其来源解析[J]. 环境化学, 2011,30(4):825-831. [7] XIE Y J, LU H B, YI A J, et al. Characterization and source analysis of water-soluble ions in PM2.5 at a background site in Central China[J]. Atmospheric Research, 2020,239:104881. [8] WANG S S, YU R L, SHEN H Z, et al. Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China[J]. Environmental Pollution, 2019,251:442-452. [9] 张家泉, 胡天鹏, 刘浩, 等. 316国道黄石-武汉段大气降尘中水溶性离子污染特征[J]. 中国粉体技术, 2014,20(6):34-39. [10] TIAN S L, PAN Y P, LIU Z R, et al. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 2014,279:452-460. [11] XU L L, YU Y K, YU J S, et al. Spatial distribution and sources identification of elements in PM2.5 among the coastal city group in the Western Taiwan Strait region, China[J]. Science of the Total Environment, 2013,442:77-85. [12] LU Y L, WANG Y, ZUO J, et al. Characteristics of public concern on haze in China and its relationship with air quality in urban areas[J]. Science of the Total Environment, 2018,637/638:1597-1606. [13] XU D M, ZHANG J Q, YAN B, et al. Contamination characteristics and potential environmental implications of heavy metals in road dusts in typical industrial and agricultural cities, southeastern Hubei Province, Central China[J]. Environmental Science and Pollution Research, 2018,25(36):36223-36238. [14] 张一修, 王济, 张浩. 贵阳市区地表灰尘重金属污染分析与评价[J]. 生态环境学报, 2011,20(1):169-174. [15] OTHMAN M, LATIF M T, MATSUMI Y. The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre[J]. Ecotoxicology and Environmental Safety, 2019,170:739-749. [16] 孙有昌, 姜楠, 王申博, 等. 安阳市大气PM2.5中水溶性离子季节特征及来源解析[J]. 环境科学, 2020,41(1):75-81. [17] ZHANG Q, SHEN Z X, CAO J J, et al. Chemical profiles of urban fugitive dust over Xi'an in the south margin of the Loess Plateau, China[J]. Atmospheric Pollution Research, 2014,5(3):421-430. [18] 闫广轩, 张靖雯, 雷豪杰, 等. 郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析[J]. 环境科学, 2019,40(4):1545-1552. [19] ZHANG X Y, ZHAO X, Ji G X, et al. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China[J]. Journal of Atmospheric Chemistry, 2019,76(1):73-88. [20] ZHAO Y, YU R L, HU G R, et al. Chemical characteristics and Pb isotopic compositions of PM2.5 in Nanchang, China[J]. Particuology, 2017,32:95-102. [21] LIU X H, JIANG N, YU X, et al. Chemical characteristics, sources apportionment, and risk assessment of PM2.5 in different functional areas of an emerging megacity in China[J]. Aerosol and Air Quality Research, 2019,19(10):2222-2238. [22] 张伟, 姬亚芹, 张军, 等. 辽宁典型城市道路扬尘PM2.5中水溶性无机离子组分特征及来源解析[J]. 环境科学, 2017,38(12):4951-4957. [23] KULSHRESTHA A, BISHT D S, MASIH J, et al. Chemical characterization of water-soluble aerosols in different residential environments of semi aridregion of India[J]. Journal of Atmospheric Chemistry, 2009,62(2):121-138. [24] 程佳惠, 李金娟, 孙广权, 等. 典型酸雨城市降水、降尘中阴阳离子分布特征及其相关性[J]. 环境科学学报, 2015,35(6):1676-1682. [25] 丁海霞, 陶雪梅, 张宁. 兰州市大气降尘和土壤中水溶性离子的研究[J]. 甘肃科技, 2017,33(20):33-36. [26] 郭振东, 朱彬, 王红磊, 等. 长江三角洲霾天气PM2.5中水溶性离子特征及来源解析[J]. 中国环境科学, 2019,39(3):928-938. [27] WANG H L, ZHU B, SHEN L J, et al. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China:Size-fractionated, seasonal variations and sources[J]. Atmospheric Environment, 2015,123:370-379. [28] 王剑, 徐美, 叶霞, 等. 沧州市大气降水化学特征分析[J]. 环境科学与技术, 2014,37(4):96-102.
点击查看大图
计量
- 文章访问数: 139
- HTML全文浏览量: 9
- PDF下载量: 8
- 被引次数: 0