DISCUSSION ON THE EXISTING PROBLEMS AND ADVANTAGES OF HEAT PUMP LOW TEMPERATURE DRYING OF SLUDGE
-
摘要: 污泥的显著特征是含水率高和黏度大,机械脱水污泥含水率在80%左右。由于其含水率高,体积庞大,为污泥处理处置带来了经济和技术上的困难。降低污泥含水率是无害化、减量化处理的关键和资源化利用的前提。加热干化是污泥深度脱水最有效方法之一,但传统热风对流干燥存在效率低、能耗高及尾气处理难度大等问题。热泵干燥是近年来开发的1种污泥低温干化新技术,具有能耗低、干化过程易于控制及安全性能高的优点。但需考虑进入干燥机的污泥颗粒大小及稳定性,协调污泥颗粒内部与外部传热传质,并处理好干燥过程中的粉尘及腐蚀性气体对热泵换热器的影响。Abstract: The outstanding characteristics of sewage sludge are the high moisture content. The moisture of sewage sludge cake after mechanical dewatering is still as high as 80%. It is difficult to sewage sludge treatment both efficiently and economically, due to its high moisture content and bulkiness. However, decreasing the moisture content of sludge is the crux of the matter in harmlessness and bulkiness reduction, which is also the premise of resource utilization. Heating drying is one of the most effective methods of sludge deep dehydration, but the traditional hot air convection drying has many problems, such as low efficiency, high energy consumption and difficult tail gas treatment. Heat pump drying is a new technology of sludge low temperature drying, which has the advantages of low energy consumption, easy control of drying process and high safety performance. However, it is necessary to consider the size and stability of the sludge particles entering the dryer, coordinate the heat and mass transfer inside and outside the sludge particles, and deal with the impact of the dust and corrosive gas in the drying process on the heat pump heat exchanger.
-
Key words:
- sewage sludge /
- heat pump /
- low temperature drying /
- technical advantages
-
[1] 中华人民共和国环境保护部. 2015年环境统计年报[EB/OL].[2017-02-23]. http://www.zhb.gov.cn/gzfw_13107/hjtj/hjtjnb/. [2] DUAN N N,DONG B,WU B,et al. High-solid anaerobic digestion of sewage sludge under mesophilic conditions:feasibility study[J]. Bioresource Technology,2012,104:150-156. [3] 周玲玲,董滨,戴晓虎. 污水处理厂污泥减量化技术[M]. 北京:中国建筑工业出版社,2013. [4] 翁焕新. 污泥无害化、减量化、资源化处理新技术[M]. 北京:科学出版社,2009. [5] CHUA K J,CHOU S K,HO J C, et al. Heat pump drying:recent developments and future trends[J]. Drying Technology, 2002,20,1579-1610. [6] 张绪坤, 李华栋,徐刚,等. 热泵干燥系统性能试验研究[J]. 农业工程学报,2006,24(12):226-229. [7] 宋小勇,常志娟,苏树强,等. 远红外辅助热泵干燥装置性能试验[J]. 农业机械学报,2012,43(5):136-141. [8] 翁焕新,马学文,苏闵华,等. 二段式污泥低温干化的原理与水汽热平衡[J]. 环境科学学报,2010,30(6):1164-1169. [9] DENG W Y,YAN J H,LI X D,et al. Emission characteristics of volatile compounds during sludge drying process[J]. Journal of Hazard Materials, 2009,162(1):186-192. [10] 褚赟,翁焕新,章金俊,等. 污泥干燥化过程中苯系物(BTEX)的释放及致癌风险评价[J]. 环境科学学报,2009,29(4):777-785. [11] 饶宾期,曹黎. 太阳能热泵污泥干燥技术[J]. 农业工程学报,2012,28(3):184-188. [12] 田顺. 太阳能结合中水源热泵干化污泥及生物除臭技术研究[D]. 北京:清华大学,2014. [13] 梁华杰,王杰,孟建国,等. 浅析污泥低温干化设备生产运行表现:以某市经济开发区污水处理厂为例[J]. 智能环保,2019,5(15):131-132. [14] 朱有法. 闭式低温污泥干化系统设计[J]. 环境工程,2019,37(增刊):757-765. [15] 王伟云. 污泥间接薄层干燥与热力耦合脱水干燥研究[D]. 大连:大连理工大学,2012. [16] 刘长燕,葛仕福. 污泥干燥特性及其模型[J]. 化工装备技术,2010,31(1):1-4,7. [17] 马学文. 城市污泥干燥特性及工艺研究[D]. 杭州:浙江大学,2008. [18] ZHOU Y N,JIN Y Y. Mathematical modeling of thin-layer infrared drying of dewatered municipal sewage sludge (DWMSS)[J]. Procedia Environmental Sciences,2016,31:758-766. [19] 张晓敏. 脱水污泥挤条成型及其干燥特性研究[D]. 大连:大连理工大学,2012. [20] 谢蕴江,吴中华,吴龙,等. 城市污水处理厂污泥低温对流干燥动力学特性[J]. 天津科技大学学报,2012,27(4):52-56. [21] 张绪坤,刘胜平,吴青荣,等. 污泥低温干燥动力学及干燥参数优化[J]. 农业工程学报,2017,33(17):216-223. [22] 尹军,谭学军. 污水污泥处理处置与资源化利用[M]. 北京:化学工业出版社,2005.
点击查看大图
计量
- 文章访问数: 401
- HTML全文浏览量: 85
- PDF下载量: 13
- 被引次数: 0