EFFECT OF ADDED IRON ON ANAEROBIC DIGESTION PROCESS OF MUNICIPAL SLUDGE IN METHANE PRODUCTION
-
摘要: 为提高城市污泥厌氧消化产甲烷效率,除适量添加餐厨垃圾以提高有机质外,还在污泥中加入了机械加工企业产生的废铁屑,中温(39±1) ℃下厌氧消化30 d,同时与加入等量纯铁粉对比,考察废铁屑和纯铁粉的产甲烷效率。结果表明:废铁屑组和纯铁粉组的累积产甲烷量分别达到340.33,336.52 mL/g,分别比不外加任何铁元素的空白组提高了54%、52%;上述两组在厌氧消化第10天产生的挥发性有机酸达到最大,分别为11051,10800 mg/L,比空白组高出16%、12%。消化第1天,废铁屑组和纯铁粉组的H2组分比空白组提高了24%、12%;到第25天时,两组的CH4组分分别比空白组提高了35%、30%。表明废铁屑中多孔的FeOOH导致微生物絮体松散,使得废铁屑厌氧消化的产甲烷效果优于铁粉。Abstract: To improve the efficiency of methane production by anaerobic digestion process of municipal sludge, rusted scrap iron produced by mechanical processing plant was added to the sludge mixing with some kitchen waste to increase organic matters composition, and same amount of pure iron powder was added as the control group. The methane production effect of rusted scrap iron and pure iron powder was compared, after anaerobic digestion at medium temperature (39±1)℃ for 30 days. The results showed that the cumulative methane production in the rusted scrap iron group and the iron powder group reached 340.33 mL/g and 336.52 mL/g, respectively, which increased by 54% and 52% compared with the blank group; the volatile organic acids produced by the above two groups on the tenth day of anaerobic digestion were 11051 mg/L and 10800 mg/L, respectively, which were 16% and 12% higher than that of the blank group; as to the proportion of daily gas production components, on the first day, the proportion of H2 for rusted scrap iron group and pure iron powder group were increased by 24% and 12%, compared with that of the blank group; on the 25th day, the proportion of CH4 for rusted scrap iron group and pure iron powder group were 35% and 30% higher than that of blank group. The porous FeOOH in the rusted scrap iron led to a loose structure for microbial flocs, which resulted in a significant methanogenic effect of anaerobic digestion process than that of pure iron powder.
-
Key words:
- scrap iron /
- iron powder /
- anaerobic digestion /
- methane-producing
-
[1] 韩鹏, 刘和, 丁春华, 等. 蒸汽爆破对城市污泥预处理和厌氧发酵产酸的影响[J].中国环境科学, 2017, 37(1):238-244. [2] ZHANG S, CHANG J L, LIN C, et al. Enhancement of methanogenesis via direct interspecies electron transfer between, Geobacteraceae and Methanosaetaceae conducted by granular activated carbon[J]. Bioresource Technology, 2017, 245:132-137. [3] GENG Y C, ZHANG B, DU L Z, et al. Improving methane production during the anaerobic digestion of waste activated sludge:CaO-ultrasonic pretreatment and using different seed sludges[J]. Procedia Environmental Sciences, 2016, 31:743-752. [4] WEN Z G, WANG Y J, DE CLERCQ D. What is the true value of food waste:a case study of technology integration in urban food waste treatment in Suzhou City, China[J]. Journal of Cleaner Production, 2016,118:88-96. [5] 高雪濛, 周丽丽, 秦杰, 等. 氧化铁投加方式对餐厨垃圾厌氧消化产气的影响[J]. 环境工程, 2017, 35(4):101-105. [6] WEI W, XU Z Q, FU J, et al. Zero valent iron enhances methane production from primary sludge in anaerobic digestion[J]. Chemical Engineering Journal, 2018, 351:1159-1165. [7] 张玲, 郑西来, 佘宗莲, 等. FeCl3及AlCl3对中温厌氧消化系统产生H2S的抑制作用[J]. 环境工程学报, 2015, 9(12):5907-5914. [8] FENG Y H, ZHANG Y B, XIE Q, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J]. Water Research, 52:242-250. [9] 朱铖, 程洁红. 铁刨花投量对餐厨垃圾和污泥协同厌氧消化的影响[J]. 中国给水排水, 2018, 34(23):16-21. [10] 王华, 卢培利, 艾海男, 等. 挥发性脂肪酸的滴定测量方法进展[J]. 环境科学与技术, 2008,31(2):47-50,82. [11] 国家环境保护总局.《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [12] YU L, BIAN C, ZHU N W, et al. Enhancement of methane production from anaerobic digestion of waste activated sludge with choline supplement[J]. Energy, 2019, 173:1021-1029. [13] WEI J, HAO X D, MARK C M, et al. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron:a review[J]. Renewable and Sustainable Energy Reviews, 2018, 89:16-26. [14] 方慧莹, 王端立, 陈皓, 等. 纳米零价铁对厌氧消化影响的反应动力学模型[J]. 化工学报,2017,68(5):2042-2048,2217. [15] WANG D X, MA W C, HAN H J, et al. Enhanced treatment of Fischer-Tropsch (F-T) wastewater by novel anaerobic biofilm system with scrap zero valent iron (SZVI) assisted[J]. Biochemical Engineering Journal, 2017, 117:66-76. [16] PUYOL D, FLORES-ALSINA X, SEGURA Y, et al. Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process[J]. Chemical Engineering Journal, 2018, 335:703-711. [17] 郝晓地, 魏静, 曹达啟. 废铁屑强化污泥厌氧消化产甲烷可行性分析[J]. 环境科学学报, 2016, 36(8):2730-2740. [18] YUHOON H, PERIYASAMY S, MO-KWON L, et al. Enhanced hydrogen fermentation by zero valent iron addition[J]. International Journal of Hydrogen Energy, 2018, 146:2758-2765. [19] WANG J, FANG H Y, JIA H, et al. Effect of zero-valent iron and trivalent iron on UASB rapid start-up[J]. Environmental Science & Pollution Research, 2018, 25(1):749-757. [20] 王亚娥, 冯娟娟, 李杰, 等. 不同Fe(Ⅲ)对活性污泥异化铁还原耦合脱氮的影响及机理初探[J]. 环境科学学报,2014,34(2):377-384. [21] 姚昕, 翟思媛, 冯娟娟. 活性污泥异化铁还原协同降解腈纶废水特征污染物DMAC[J]. 工业水处理, 2014, 34(10):45-48. [22] PADHI D, PARIDA K. Facile fabrication of a-FeOOH nanorod/RGO composite:a robust photocatalyst for reduction of Cr(Ⅵ) under visible light irradiation[J]. Journal of Materials Chemistry, 2014, 2(26):10300-10312. [23] YU B, HUANG X T, ZHANG D L, et al. Response of sludge fermentation liquid and microbial community to nano zero-valent iron exposure in a mesophilic anaerobic digestion system[J]. RSC Advances, 2016, 6(29):24236-24244. [24] 王磊. 我国重点流域城市污水处理厂污泥产率调研[J]. 中国给水排水,2018,34(14):23-27. [25] METCALF E I. Wastewater Engineering:Treatment and Reuse[M]. New York:McGraw-Hill, 2003. [26] 葛振, 魏源送, 刘建伟, 等. 沼渣特性及其资源化利用探究[J]. 中国沼气,2014,32(3):74-82.
点击查看大图
计量
- 文章访问数: 163
- HTML全文浏览量: 30
- PDF下载量: 5
- 被引次数: 0