COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS
-
摘要: 以山东沂河沉积物处置示范工程为例,分别对经土工管袋填埋和减量化隔离处置3年后的沉积物生态风险进行跟踪评价,以探究不同处置方式对沉积物重金属安全性的影响。对2种处置方式下沉积物中Cr、As、Zn、Cu、Cd、Pb和Hg的总量及赋存形态进行分析,并采用浸出毒性法、风险评价编码法(RAC)和潜在生态风险指数法(PERI)进行生态风险和环境安全性评估。结果表明:2种沉积物处置场地内沉积物As、Cd和Hg总量超过GB 15618—2018《土壤环境质量 农用地土壤 污染风险管控标准(试行)》的风险筛选值;2种场地内沉积物中Zn和Hg的形态分布存在较大差异;浸出毒性实验表明,土工管袋填埋处置Cr、As和Cu浸出毒性高于减量化隔离处置,而Zn则相反。综合浸出毒性法、RAC和PERI的结果,经土工管袋填埋处置后沉积物重金属的生态风险相对较高。在选择何种方式对疏浚沉积物进行异位处理时,应综合权衡各个方面因素,以确保环境效益和经济效益的最大化。Abstract: Taking the sediment disposal demonstration project of Yihe River in Shandong province as an example, the ecological risks of sediment after three years of geo-textile tube landfill and reduction disposal were tracked to explore the effects of different disposal methods on the safety of heavy metals in sediments. The total concentrations and geochemical fractions of Cr, As, Zn, Cu, Cd, Pb, and Hg in sediments by the two disposal methods were analyzed. Meanwhile, their ecological risks and environmental safety were assessed by leaching toxicity method, risk assessment code (RAC), and potential ecological risk index method (PERI). The obtained results showed total concentrations of As, Cd, and Hg in sediments from two different disposal sites exceeded the risk screening value of the Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618-2018). The geochemical fraction distribution of Zn and Hg in the sediments of the two sites was quite different, and the difference was mainly related to the differences of two disposal methods. The leaching toxicity test showed that the leaching toxicity of Cr, As, and Cu in geo-textile tube landfill was higher than that in reduction disposal, while the leaching toxity of Zn was on the contrary. According to the results of leaching toxicity, RAC, and PERI, the ecological risk of geo-textile tube landfill was relatively higher. In order to maximize the environmental and economic benefits, it was necessary to weigh all aspects of factors when choosing which way to treat the dredged sediments.
-
Key words:
- dredging /
- sediment /
- heavy metal /
- ecological risk /
- geo-textile tube landfill /
- reduction disposal
-
[1] 张运,许仕荣,卢少勇. 新丰江水库表层沉积物重金属污染特征与评价[J]. 环境工程,2018,36(1):134-141. [2] 王辉,赵悦铭,刘春跃,等. 辽河干流沉积物重金属污染特征及潜在生态风险评价[J]. 环境工程,2019,37(11):65-69. [3] 刘群群,孟范平,林怡辰,等. 胶州湾沉积物重金属生物可利用性及生态风险评价[J]. 中国海洋大学学报(自然科学版),2019,49(5):35-44. [4] MA T, SHENG Y Q, MENG Y J, et al. Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size[J]. Chemosphere, 2019, 225:83-92. [5] KRCMAR D, TENODI S, GRBA N, et al. Preremedial assessment of the municipal landfill pollution impact on soil and shallow groundwater in Subotica, Serbia[J]. Science of the Total Environment, 2018, 615:1341-1354. [6] 宋江敏. 山东半岛河流底泥重金属污染特征及填埋处置风险评估[D]. 烟台:中国科学院烟台海岸带研究所,2018. [7] 蓝巧娟,吴彦,闫彬,等. 三峡库区(万州段)消落区沉积物重金属污染评价及来源分析[J]. 环境工程,2018,36(8):193-197. [8] 刘群群,孟范平,王菲菲,等. 东营市北部海域沉积物中重金属的分布、来源及生态风险评价[J]. 环境科学,2017,38(9):3635-3644. [9] 张茜,冯民权,郝晓燕. 漳泽水库沉积物重金属污染特征与生态风险评价[J]. 环境工程,2019,37(1):11-17. [10] RAURET G, LOPEZ-SANCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmetal Monitoring, 1999, 1(1):57-61. [11] LIU Q Q, WANG F F, MENG F P, et al. Assessment of metal contamination in estuarine surface sediments from Dongying City, China:use of a modified ecological risk index[J]. Marine Pollution Bulletin, 2018, 126:293-303. [12] 环境保护部,固体废物浸出毒性浸出方法水平振荡法:HJ 557-2009[S]. 北京:中国环境科学出版社,2010. [13] 张运,许仕荣,卢少勇. 新丰江水库表层沉积物重金属污染特征与评价[J]. 环境工程,2018,36(1):134-141. [14] LIN Y C, MENG F P, DU Y X, et al. Distribution, speciation, and ecological risk assessment of heavy metals in surface sediments of Jiaozhou Bay, China[J]. Human and Ecological Risk Assessment:An International Journal, 2016, 22(5):1253-1267. [15] HAKANSON L. An ecological risk index for aquatic pollution control:a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001. [16] 庞绪贵,代杰瑞,胡雪平,等. 山东省土壤地球化学背景值[J]. 山东国土资源,2018,34(1):39-43. [17] LIU Q Q, SHENG Y Q, JIANG M, et al. Attempt of basin-scale sediment quality standard establishment for heavy metals in coastal rivers[J]. Chemosphere, 2020, 245:125596. [18] 生态环境部,国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618-2018[S]. 2018. 期刊类型引用(12)
1. 姚琦,黎明杰,麻林,唐哲,朱熠,刘阳圆,蔡永久,燕文明,张又,李宽意. 基于大型底栖动物完整性指数与综合生物指数的水生态评价. 中国环境科学. 2024(03): 1476-1486 . 百度学术
2. 朱定康,庞晓旭,黄昆,邱明,董艳方. 基于模糊理论的立式磁轴承系统保护轴承抗冲击影响因素分析. 轴承. 2024(10): 55-64 . 百度学术
3. 吕秀勤. 基于时序全局主成分分析—熵权法的地区水质健康评价——以厦门地区饮用水源为例. 环境科学导刊. 2023(01): 68-76 . 百度学术
4. 王军义,梁风,彭雄武,史文兵,严克丽,江兴元. 基于GIS技术的单体崩塌危险范围评价方法研究. 工程地质学报. 2023(01): 188-198 . 百度学术
5. 张岳珺. 基于熵权法的计算机辅助语言测试效度评价. 吉林大学学报(信息科学版). 2023(02): 374-380 . 百度学术
6. 乔志浩,李宝,邓一深,朱政硕. 河流型湿地及污水厂尾水人工湿地水质净化效能对比分析:以山东临沂市为例. 环境工程. 2023(S2): 19-24 . 本站查看
7. 邹再进,陈嘉. 基于有向哈斯图技术的中国相对贫困分析. 西南林业大学学报(社会科学). 2022(02): 43-48 . 百度学术
8. 章筱悦,李洁,孙寓姣,潘成忠,黄宇佳,尹萌. 永定河北京段基于模糊数学的水体富营养化评价. 环境工程. 2022(05): 117-122 . 本站查看
9. 尹鸿荷. 采煤塌陷区湿地公园生态修复及其量化评估优化研究. 湖北农业科学. 2022(23): 26-29+82 . 百度学术
10. 赵志国,杨立,王青,魏伯阳. 基于熵理论的山东省国家湿地公园管理绩效评价. 生态学报. 2021(21): 8456-8463 . 百度学术
11. 王建英,张利. 中国智慧城市旅游便利性评价的理论与实证. 地理与地理信息科学. 2021(06): 113-119 . 百度学术
12. 杨利,马朝红,胡时友,段建设,徐维明,涂涛. 基于模糊层次分析的水稻化肥减施效果评估研究——以湖北省为例. 湖北农业科学. 2020(24): 56-62 . 百度学术
其他类型引用(4)
-

计量
- 文章访问数: 180
- HTML全文浏览量: 26
- PDF下载量: 3
- 被引次数: 16