ESTABLISHMENT OF THE ENVIRONMENTAL INDEXES IN SELECTION OF REMEDIATION SCHEMES: A CASE STUDY OF AN ABANDONED COKING SITE
-
摘要: 我国污染场地的环境管理框架尚不健全,修复技术研发及筛选过程中对修复产生的"二次污染"认识往往不足。基于绿色可持续原则,从污染物排放、环境敏感程度、环境风险、土壤及生态环境、法律法规及标准、社会可接受程度等方面探讨环境指标的构建,并以北京某废弃焦化厂土壤修复方案筛选为例,进行了2项方案的环境比选。结果表明:原位热脱附温室气体及大气有组织排放分别为异位热脱附的6.0,1.49倍,但前者造成的环境风险、敏感程度及社会接受程度等指标明显优于后者,为优先推荐方案。如何实现污染物减排以及环境风险的控制是两方案分别需要解决的主要环境问题。本次建立的环境指标体系可用于决策及技术筛选,也可通过识别的关键环境因素进行技术方案优化。Abstract: The environmental management framework of contaminated sites is not completed in China, and there is often lack of clear understanding about environmental impacts in the process of remediation technology development or program selection. As a result, sometimes secondary pollution caused by remediation is ignored. The research established the environmental indexes including pollutant discharge, environmental sensitivity, environmental risk, soil and ecological environment, laws, regulations and standards, and social acceptability based on green and sustainable principle. The environmental comparison between two remediation technologies was carried out at an abandoned coking site in Beijing. The result showed that the emission of CO2 and organized atmospheric pollutants of thermal desorption in situ were 6.0, 1.49 times larger than that of ex-situ thermal desorption, since the latter had advantages in energy saving and emission reduction. While the indexes such as environmental risk, sensitivity and social acceptance of in-situ thermal desorption were better and the in-situ program was chosen as the preferred plan. How to reduce emission of pollutants and lower environmental risks further was the key point to improve the two programs respectively. The index system could be used for screening or optimizing the remediation schemes by identifying critical environmental factors.
-
Key words:
- contaminated sites /
- sceening /
- environmental indexes /
- green and sustainable principle
-
[1] 李玮,王明玉,韩占涛,等. 棕地地下水污染修复技术筛选方法研究:以某废弃化工厂污染场地为例[J]. 水文地质工程地质, 2016, 43(3):131-140. [2] 白利平,罗云,刘俐,等. 污染场地修复技术筛选方法及应用[J]. 环境科学, 2015, 36(11):4218-4224. [3] BELLO-DAMBATTA A, FARMANI R, JAVADI A A, et al. The analytical hierarchy process for contaminated land management[J]. Advanced Engineering Informatics, 2009, 23(4):433-441. [4] 廉新颖,杨昱,席北斗,等. 地下水污染修复技术验证评价方法研究[J]. 环境科学研究, 2018, 31(10):1743-1750. [5] BAI L P, LUO Y, SHI D R, et al. TOPSIS-based screening method of soil remediation technology for contaminated sites and its application[J]. Journal of Soil Contamination, 2015, 24(4):386-397. [6] 樊陆欢,洪岚,蒋澄宇,等. 基于PROMETHEEⅡ法的POPs污染场地修复技术评价体系[J]. 环境工程, 2014, 32(9):172-176. [7] CADOTTE M, LOUISE D, RÉJEAN S. Selection of a remediation scenario for a diesel-contaminated site using LCA[J]. International Journal of Life Cycle Assessment, 2007, 12(4):239-251. [8] HIGGINS M R, OLSON T M. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation[J]. Environmental Science & Technology, 2009, 43(24):9432-9438. [9] 胡新涛,朱建新,丁琼. 基于生命周期评价的多氯联苯污染场地修复技术的筛选[J]. 科学通报, 2012, 57(2/3):129-137. [10] 环境保护部. 工业企业场地环境调查评估与修复工作指南(试行)[S]. 北京:中国标准出版社, 2014. [11] 邢颖,吕永龙,史雅娟,等. 焚烧、水泥窑和安全填埋法处置PCBs污染物技术优选[J]. 环境科学, 2007, 28(3):673-678. [12] 张倩,蒋栋,谷庆宝,等. 基于AHP和TOPSIS的污染场地修复技术筛选方法研究[J]. 土壤学报, 2012, 49(6):1088-1094. [13] 陶欢,廖晓勇,阎秀兰,等. 应用多属性决策分析法筛选污染场地土壤修复技术[J]. 环境工程学报, 2017, 11(8):4850-4860. [14] HOU D Y, AL-TABBAA A, LUO J. Assessing effects of site characteristics on remediation secondary life cycle impact with a generalised framework[J]. Journal of Environmental Planning and Management, 2014, 57(7):1083-1100. [15] RIDSDALE D R, NOBLE B F. Assessing sustainable remediation frameworks using sustainability principles[J]. Journal of Environmental Management, 2016, 184(Part 1):36-44. [16] 侯德义,宋易南. 农田污染土壤的绿色可持续修复:分析框架与相关思考[J]. 环境保护, 2018, 46(1):36-40. [17] MARTIN L. Incorporating values into sustainability decision-making[J]. Journal of Cleaner Production, 2015, 105:146-156. [18] 张丽峰. 我国产业结构、能源结构和碳排放关系研究[J]. 干旱区资源与环境, 2011, 25(5):1-7. [19] HOLLAND K S, LEWIS R E, TIPTON K, et al. Framework for integrating sustainability into remediation projects[J]. Remediation Journal, 2011, 21(3):7-38. [20] CAPPUYNS V. Environmental impacts of soil remediation activities:quantitative and qualitative tools applied on three case studies[J]. Journal of Cleaner Production, 2013, 52(4):145-154. [21] United States Environmental Protection Agency. Superfund remedy report, 15th ed. EPA-542-R-17-001, 2017. [22] 马妍,董彬彬,杜晓明,等. 挥发及半挥发性有机物污染场地异位修复技术的二次污染及其防治[J]. 环境工程, 2017, 35(4):174-178. [23] 甘平,杨乐巍,房增强,等. 挥发性有机物污染场地挖掘过程中污染扩散特征[J]. 环境科学, 2013, 34(12):4619-4626. [24] KENNEY M, WHITE M. A cost-benefit model for evaluating remediation alternatives at superfund sites incorporating the value of ecosystem services[R]. Springer US, 2007:169-196. [25] BURGER J. Environmental management:integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands[J]. Science of the Total Environment, 2008, 400(1):6-19. [26] 刘锴,宋易南,侯德义. 污染地块修复的社会可持续性与公众知情研究[J]. 环境保护, 2018,46(9):37-44. [27] 陈卫平,谢天,李笑诺,等. 中国土壤污染防治技术体系建设思考[J]. 土壤学报, 2018, 55(3):557-568. [28] 孟祥帅,庞然,吴萌萌,等. 某废弃焦化场地原位燃气热脱附污染排放及控制[J]. 环境工程, 2019, 37(11):177-183. [29] 籍龙杰,刘鹏,韦云霄,等. 单根加热管原位加热土壤过程中温度变化规律[J]. 环境工程, 2019, 37(2):165-169. [30] 北京市环境保护局,北京市质量技术监督局. 大气污染物综合排放标准:DB 11/501-2017[S].2017. [31] HOU D Y, O'CONNOR D, AL-TABBAA A. Comparing the adoption of contaminated land remediation technologies in the United States, United Kingdom, and China[J]. Remediation Journal, 2015, 25(1):33-51.
点击查看大图
计量
- 文章访问数: 148
- HTML全文浏览量: 11
- PDF下载量: 17
- 被引次数: 0