DEGRADATION OF ATRAZINE BY FERROUS ACTIVATED SODIUM HYPOCHLORITE
-
摘要: 通过考察NaClO添加量、n(Fe2+):n(NaClO)、反应时间、土壤pH、腐植酸与无机阴离子对阿特拉津降解效率的影响,对比Fe2+/NaClO氧化处理后土壤微生物群落的变化情况,探究了FeSO4活化NaClO对土壤中阿特拉津的降解性能。结果表明:当NaClO添加量为10 mmol,n(Fe2+):n(NaClO)为1:1时,阿特拉津降解效率最佳,为82%;其降解符合一级反应动力学模型;Fe2+/NaClO体系比单独的NaClO可产生更多的·OH参与阿特拉津降解;降解过程受土壤pH(3~9)影响较小;腐植酸和无机阴离子(Cl-、HCO3-)对阿特拉津降解有消极影响。经过Fe2+/NaClO处理后土壤微生物门类丰度发生明显变化,如Proteobacteria门丰度由25.46%变化为72.73%。Abstract: This study investigated the feasibility of atrazine degradation in soil by using Fe2+-activated hypochlorite (NaClO). The effect of main factors such as oxidant dosage, the Fe2+ to NaClO molar ratio, initial soil pH, etc. on the degradation of atrazine was considered. The results showed that after 8 h reaction, 82% of atrazine could be degraded when NaClO dosage was 10 mmol at Fe2+/NaClO molar ratio of 1:1. The degradation of atrazine followed the pseudo-first-order model. ESR result confirmed that the Fe2+/NaClO system yielded more HO· than that of NaOCl alone to participate in atrazine degradation. The Fe2+/NaClO process could operate over a wide pH range (3~9), while humic acid and inorganic anions (Cl-, HCO3-) in the soil matrix had a negative effect on atrazine degradation. After the Fe2+/NaClO treatment, the soil microbial community was obviously affected, and the relative abundance of Proteobacteria rose from 25.46% to 72.73%.
-
Key words:
- ferrous activation /
- sodium hypochlorite /
- atrazine /
- soil remediation /
- microbial community
-
[1] 李艳,顾华,刘洪禄,等.北京东南郊灌区土壤和农作物有机农药污染风险评估[J].北京水务,2019(2):17-22. [2] YUE L, GE C J, FENG D, et al. Adsorption-desorption behavior of atrazine on agricultural soils in China[J]. Journal of Environmental Sciences, 2017,57:180-189. [3] LIN Z, ZHEN Z, LIANG Y Q, et al. Changes in atrazine speciation and the degradation pathway in red soil during the vermiremediation process[J]. Journal of Hazardous Materials, 2019, 364(15):710-719. [4] SUN J T, PAN L L, ZHAN Y U, et al. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks[J]. Environmental Geochemistry & Health,2017,39(2):369-378. [5] 肖建军,李亚龙,杨琦.寡养单胞菌降解石油污染土壤中的甲苯[J].环境工程,2018,36(4):186-189. [6] 宋凡浩,吴丰昌,郭飞,等.XAD树脂吸附技术提取和分级土壤富里酸研究进展[J].环境工程,2017,35(11):173-177. [7] 薛红波,吴继阳,刘姝彤,等.Fe3+/TiO2负载膨胀珍珠岩降解水和土壤中苯酚的研究[J].环境工程,2016,34(7):71-75,81. [8] 徐开泰,林匡飞,陆强,等.热活化过硫酸钠降解土壤体系中的菲[J].环境工程,2018,36(1):188-194. [9] 杨晓燕,李艳苓,魏环宇,等.阿特拉津降解菌CS3的分离鉴定及其降解特性的研究[J]. 农业环境科学学报,2018,37(6):1149-1158. [10] LETICIA A F, VALVERDE C, MARISA A G. Isolation and characterization of atrazine-degradingArthrobactersp. strains from Argentine agricultural soils[J]. Annals of Microbiology, 2013, 63(1):207-214. [11] 李文帅,段玉春,范文艳,等.阿特拉津降解菌MSD6鉴定及其降解特性研究[J].安徽农学通报,2018,24(20):45-48,72. [12] 成宝志,郭琬,周海梅.阿特拉津的化学降解性研究进展[J].山东化工,2019,48(18):43-45,47. [13] 肖磊,龚启迪,金士威,等.高铁酸钾和次氯酸钠联用降解四溴双酚A的研究[J].环境污染与防治,2015,37(12):20-23,28. [14] WATTS R J, TEEL A L. Chemistry of modified fenton's reagent (catalyzed H2 O2 propagations-CHP) for in situ soil and groundwater remediation[J]. Journal of Environmental Engineering, 2005, 131(4):612-622. [15] BEHIN J, AKBARI A, MAHMOUDI M, et al. Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale[J]. Water Research, 2017, 121(15):120-128. [16] DEBORDE M, GUNTEN U V. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms:a critical review[J]. Water Research, 2008, 42(1/2):13-51. [17] 章启帆,李勇,徐婷,等.次氯酸钠催化氧化法处理氨氮废水的研究[J].无机盐工业,2018,50(1):52-56. [18] LIWEI C, XIAOXIN H, YING Y, et al. Degradation of atrazine and structurally related, s-triazine herbicides in soils by ferrous-activated persulfate:kinetics, mechanisms and soil-types effects[J]. Chemical Engineering Journal, 2018, 351:523-531. [19] WANG X, WANG L G, LI J B, et al. Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation[J]. Separation and Purification Technology, 2014, 122:41-46. [20] CANDEIAS L P, STRATFORD M R L, WARDMAN P. Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model IRON(Ⅱ) complex[J]. Free Radical Research, 1994,20(4):241-249. [21] FOLKES L K, CANDEIAS L P, WARDMAN P. Kinetics and Mechanisms of Hypochlorous Acid Reactions[J]. Archives of Biochemistry and Biophysics, 1995, 323(1):120-126. [22] 李永涛,罗进,岳东.热活化过硫酸盐氧化修复柴油污染土壤[J].环境污染与防治,2017,39(10):1143-1146. [23] 曹梦华,涂书新,张娥,等.抗坏血酸还原降解土壤中的阿特拉津[J].环境工程,2019,37(12):207-211. [24] SOUFAN M, DEBORDE M, DELMONT A, et al. Aqueous chlorination of carbamazepine:kinetic study and transformation product identification[J]. Water Research, 2013, 47(14):5076-5087. [25] ZHANG H, CHOI H J, HUANG C P. Optimization of Fenton process for the treatment of landfill leachate[J]. Journal of Hazardous Materials, 2005, 125(1/213):166-174. [26] XIAO R Y, HE Z Q, DIAZ-RIVERA D, et al. Sonochemical degradation of ciprofloxacin and ibuprofen in the presence of matrix organic compounds[J]. Ultrasonics Sonochemistry, 2014, 21(1):428-435. [27] AL-QAIM F F, MUSSA Z H, OTHMAN M R, et al. Removal of caffeine from aqueous solution by indirect electrochemical oxidation using a graphite-PVC composite electrode:a role of hypochlorite ion as an oxidising agent[J]. Journal of Hazardous Materials, 2015, 300:387-397. [28] TANG T, LU G N, WANG W G, et al. Photocatalytic removal of organic phosphate esters by TiO2:effect of inorganic ions and humic acid[J]. Chemosphere Environmental Toxicology & Risk Assessment, 2018,206:26-32. [29] TAO K Y, LIU X Y, CHEN X P, et al. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis[J]. Bioresource Technology, 2017,224:327-332.
点击查看大图
计量
- 文章访问数: 174
- HTML全文浏览量: 19
- PDF下载量: 5
- 被引次数: 0