MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS
-
摘要: 利用杨树木屑在限氧条件下,制备出3种不同热解温度下的生物炭,以探究其对水溶液混合磺胺类药物(SAs)的吸附机制。结果表明:350 ℃烧制的生物炭(BC350)孔径以大孔为主,而500 ℃(BC500)与650℃(BC650)以介孔为主;生物炭表面芳香性随着热解温度提高而增强。伪二级模型较适合描述生物炭吸附SAs的动力学过程;Freundlich等温模型对杨木生物炭拟合度较好;杨木生物炭具有较大的SAs吸附容量,BC650的SAs吸附容量为秸秆类生物炭的2.6~104倍。吸附热力学计算表明,杨木生物炭对磺胺吸附兼有物理吸附与化学吸附,以化学吸附为主。根据不同pH值条件下3种SAs的分子形态,得出3种SAs的竞争吸附能力依次为SPD>SMZ>SDZ。Abstract: Discharge of sulfonamides (SAs) poses seriously potential ecological risk on the aquatic environment. In this paper, the biochar derived from poplar wood chips (PWCs) was produced under three pyrolysis temperatures to investigate the sorption mechanism of SAs in the aqueous solution. The experiment result showed that the pore channel of BC350 and BC500-BC650 was dominated by the macropores and mesopores, respectively. The increase of pyrolysis temperature enhanced the polycyclic aromatic surface of the biochars. The pseudo-secondary-order kinetic model and the Freundlich model could be applied to describe the kinetics and isothermal process of biochar sorption, respectively. The maximum sorption capacity of SAs of BC650 was about 2.6 to 104 times on herb-residue biochars. Based on the calculation of thermodynamics, the sorption of PWC involved the physical and chemical sorption simultaneously, but dominated by chemical sorption. The sorption affinity of three SAs was in the descending order of SPD>SMZ>SDZ, thanked to the support from their molecular morphology analysis.
-
Key words:
- biochar /
- sulfonamide /
- sorption /
- thermodynamics
-
[1] CHOI K J, KIM S G, KIM C W, et al. Determination of antibiotic compounds in water by on-line SPE-LC/MSD[J]. Chemosphere, 2007, 66(6):977-984. [2] LIN A Y, TSAI Y T. Occurrence of pharmaceuticals in Taiwan's surface waters:impact of waste streams from hospitals and pharmaceutical production facilities[J]. Science of the Total Environment, 2009, 407(12):3793-3802. [3] LIAO J Q, CHEN Y G. Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(3):471-500. [4] GUAN Y D, WANG B, GAO Y X, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China:a review[J]. Pedosphere, 2017, 27(1):42-51. [5] HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:a review[J]. J Environ Manage, 2011, 92(10):2304-2347. [6] 赵涛. 不同生物炭对水中磺胺类抗生素的吸附及机理研究[D]. 广州:华南农业大学, 2016. [7] SNYDER S A, ADHAM S, REDDING A M, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals[J]. Desalination, 2007, 202(1/2/3):156-181. [8] WU Y, WILLIAMS M, SMITH L, et al. Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils[J]. Journal of Environmental Science and Health, Part B, 2012, 47(4):240-249. [9] CHEN Z M, XIAO X, XING B S, et al. pH-dependent sorption of sulfonamide antibiotics onto biochars:Sorption mechanisms and modeling[J]. Environmental Pollution, 2019, 248:48-56. [10] LI X G, FENG H, HUANG M R. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents[J]. Chemistry-A European Journal, 2009, 15(18):4573-4581. [11] LI X G, MA X L, SUN J, et al. Powerful reactive sorption of silver (Ⅰ) and mercury (Ⅱ) onto poly (o-phenylenediamine) microparticles[J]. Langmuir, 2009, 25(3):1675-1684. [12] 靳红梅, 许彩云, 黄红英, 等. 猪粪中温厌氧消化中磺胺类抗生素的降解和吸附特征[J]. 农业环境科学学报, 2017, 36(9):1884-1892. [13] HUANG M R, PENG Q Y, LI X G. Rapid and effective adsorption of lead ions on fine poly (phenylenediamine) microparticles[J]. Chemistry-A European Journal, 2006, 12(16):4341-4350. [14] 黄美荣, 李新贵, 郭世坚. 含多官能团的全芳香酚胺共聚物及其制备方法与应用:CN105312033B[P]. 2017-12-05. [15] 董浩亮. 木质纤维生物质化学预处理后的微结构与热化学研究[D]. 西安:陕西科技大学, 2015. [16] 王丽丽, 曹振, 刘卓, 等. 杨木炭对东北黑土吸附猪粪沼液氮素特性的影响[J]. 农业机械学报, 2020, 51(3):295-305. [17] INYANG M, GAO B, ZIMMERMAN A, et al. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars[J]. Environ Sci Pollut Res Int, 2015, 22(3):1868-1876. [18] AHMED M B, ZHOU J L, NGO H H, et al. Insight into biochar properties and its cost analysis[J]. Biomass and Bioenergy, 2016, 84:76-86. [19] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater:a critical review[J]. Journal of Hazardous Materials, 2017, 323(Ptar A):274-298. [20] LEKAGUL A, TANGCHAROENSATHIEN V, YEUNG S. Patterns of antibiotic use in global pig production:a systematic review[J]. Veterinary and Animal Science, 2019, 7:100058. [21] 何文泽, 何乐林, 李文红, 等. 中药渣生物炭对磺胺甲基嘧啶的吸附及机理研究[J]. 中国环境科学, 2016, 36(11):3376-3382. [22] PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments:a critical review[J]. Bioresource Technology, 2017, 246:150-159. [23] LIU Y, SHEN L. From Langmuir kinetics to first-and second-order rate equations for adsorption[J]. Langmuir, 2008, 24(20):11625-11630. [24] 李靖. 不同源生物炭的理化性质及其对双酚A和磺胺甲噁唑的吸附[D]. 昆明:昆明理工大学, 2013. [25] PREMARATHNA K, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water:a review[J]. Chemical Engineering Journal, 2019, 372:536-550. [26] LUO J W, LI X, GE C J, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems[J]. Bioresource Technology, 2018, 263:385-392. [27] LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248:128-134. [28] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:a critical review[J]. Water Research, 2017, 120:88-116. [29] KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions[Cadmium (Ⅱ), Copper (Ⅱ), Lead (Ⅱ), Zinc (Ⅱ)] from aqueous phase[J]. International Journal of Environmental Science and Technology, 2016, 13(2):471-482. [30] ZHENG H, WANG Z Y, ZHAO J, et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181:60-67. [31] AHMED M B, ZHOU J L, NGO H H, et al. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment[J]. Bioresource Technology, 2017, 238:306-312.
点击查看大图
计量
- 文章访问数: 298
- HTML全文浏览量: 40
- PDF下载量: 20
- 被引次数: 0