中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高盐度环境下某污水处理厂AAO生化系统微生物群落变化分析

殷豪帅 黄开 王卿卿 李世峰

赵倩, 庄林岚, 盛芹, 张建. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J]. 环境工程, 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
引用本文: 殷豪帅, 黄开, 王卿卿, 李世峰. 高盐度环境下某污水处理厂AAO生化系统微生物群落变化分析[J]. 环境工程, 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010
ZHAO Qian, ZHUANG Lin-lan, SHENG Qin, ZHANG Jian. ROLE AND DESIGN PRINCIPLES OF SUBSTRATE FOR WASEWATER PURIFICATION IN SUBSURFACE FLOW CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
Citation: YIN Hao-shuai, HUANG Kai, WANG Qing-qing, LI Shi-feng. ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010

高盐度环境下某污水处理厂AAO生化系统微生物群落变化分析

doi: 10.13205/j.hjgc.202103010
详细信息
    作者简介:

    殷豪帅(1996-),男,硕士,主要研究方向为水处理与水污染控制。yhs0018@163.com

    通讯作者:

    黄开(1972-),男,硕士,正高级工程师,主要研究方向为水处理与水污染控制、海绵城市、水环境整治与水生态修复。huangkai1@smedi.com

ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT

  • 摘要: 为研究高盐度环境下AAO生化系统的活性污泥优势微生物,利用高通量测序技术对不同时期污泥进行微生物结构进行分析。结果表明:ρ(Cl-)从1000 mg/L上升到5000 mg/L的过程中,微生物群落结构发生明显变化。持久型OTUs占总序列90.59%,其中Proteobacteria(变形菌门)相对丰度始终在40%以上,Chiorobi(绿菌门)相对丰度从6.11%上升至16.13%。微生物属水平分析发现,Methyloceanibacter(16.94%~27.44%)是高盐条件下主要的有机物去除菌属,Ignavibacterium(18.43%~26.78%)是主要除硫菌属,Dechloromonas(1.52%~3.05%)、Nitrospirae(1.9%~8.84%)、Nitrosomonas(1%左右)是主要的脱氮菌属。
  • [1] WEN Y, JIN Y X, WANG J Y, et al. MiSeq sequencing analysis of bacterial community structures in wastewater treatment plants[J]. Polish Journal of Environmental Studies, 2015,24(4):1809-1815.
    [2] FAN X Y, GAO J F, PAN K L, et al. Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant[J]. RSC Advances, 2017,7(89):56317-56327.
    [3] SHU D T, HE Y L, YUE H, et al. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems[J]. Chemical Engineering Journal, 2016,290:21-30.
    [4] JU F, LI B, MA L P, et al. Antibiotic resistance genes and human bacterial pathogens:co-occurrence, removal, and enrichment in municipal sewage sludge digesters[J]. Water Research, 2016,91:1-10.
    [5] 高晨晨, 郑兴灿, 游佳, 等. 城市污水脱氮除磷系统的活性污泥菌群结构特征[J].中国给水排水, 2015,31(23):37-42.
    [6] CHEN Y, LAN S, WANG L, et al. A review:driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017,174:173-182.
    [7] HONG J M, LI W B, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013,316:23-30.
    [8] WANG Z C, GAO M C, SHE Z L, et al. Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor[J]. Separation and Purification Technology, 2015,144:223-231.
    [9] WILSON L P, HL L, ES S, et al. Microbial community acclimation enhances waste hydrolysis rates under elevated ammonia and salinity conditions[J]. Bioresour Technol, 2013,146:15-22.
    [10] KULKARNI P. Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR)[J]. Bioresource Technology, 2013,128:273-280.
    [11] FIGUEROA M, MOSQUERA-CORRAL A, CAMPOS J L, et al. Treatment of saline wastewater in SBR aerobic granular reactors[J]. Water Science and Technology, 2008,58(2):479-485.
    [12] BASSIN J P, KLEEREBEZEM R, MUYZER G, et al. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors[J]. Applied Microbiology Biotechnology, 2012,93(3):1281-1294.
    [13] XIA Y, WEN X H, ZHANG B, et al. Diversity and assembly patterns of activated sludge microbial communities:a review[J]. Biotechnology Advances, 2018,36(4):1038-1047.
    [14] KLINDWORTH A, PRUESSE E, SCHWEER T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J]. Nucleic Acids Research, 2013,41(1):e1.
    [15] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied Environmental Microbiology, 2009,75(23):7537-7541.
    [16] DESANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied Environmental Microbiology, 2006,72(7):5069-5072.
    [17] 樊晓燕, 高景峰, 王时杰, 等. 同步脱氮除磷系统中两种颜色好氧颗粒污泥的微生物群落特征[J].环境科学研究, 2017,30(8):1287-1294.
    [18] CALDERÓN K, SPOR A, BREUIL M C, et al. Effectiveness of ecological rescue for altered soil microbial communities and functions[J]. The ISME Journal, 2016,11(1):272-283.
    [19] MAR J S, LAMERE B J, LIN D L, et al. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients[J]. mBio, 2016,7(4):e01072-16.
    [20] MITTER E K, DE FREITAS J R, GERMIDA J J. Bacterial root microbiome of plants growing in oil sands reclamation covers[J]. Frontiers in Microbiology, 2017,8:849.
    [21] VAN DER GAST C J, WALKER A W, STRESSMANN F A, et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities[J]. The ISME Journal, 2011,5(5):780-791.
    [22] ZHANG T, SHAO M F, YE L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2012,6(6):1137-1147.
    [23] YOON D N, PARK S J, KIM S J, et al. Isolation, characterization, and abundance of filamentous members of Caldilineae in activated sludge[J]. The Journal of Microbiology, 2010,48(3):275-283.
    [24] FUERST J A. Intracellular compartmentation in planctomycetes[J]. Annual Review of Microbiology, 2005,59(1):299-328.
    [25] JO Y J, OH Y S, WOO S, et al. Metagenomic analysis of bacterial communities associated with four Ecklonia cava populations, including dokdo island population[J]. Toxicology and Environmental Health Sciences, 2019,11(1):11-18.
    [26] RAMITHA A X Y, CHAN X Y, YIN W Y, et al. Metagenomic analysis of microbial diversity of tropical sea water of georgetown coast, malaysia[J]. Life Science Journal, 2013,10(3):2392-2396.
    [27] VENTER J C, REMINGTON K, HEIDELBERG J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004,304(5667):66-74.
    [28] YU K, ZHANG T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge[J]. PLoS ONE, 2012,7(5):e38183.
    [29] CHEN S, CHENG H C, WYCKOFF K N, et al. Linkages of firmicutes and bacteroidetes populations to methanogenic process performance[J]. Journal of Industrial Microbiology Biotechnology, 2016,43(6):771-781.
    [30] VEKEMAN B, KERCKHOF F, CREMERS G, et al. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase[J]. Environmental Microbiology, 2016,18(12):4523-4536.
    [31] MIO T T K, TAKAO Y, SATOSHI H, et al. Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2014,64(2):462-468.
    [32] BLACKWELL N, PERKINS W, PALUMBO-ROE B, et al. Seasonal blooms of neutrophilic Betaproteobacterial Fe(Ⅱ) oxidizers and Chlorobi in iron-rich coal mine drainage sediments[J]. FEMS Microbiology Ecology, 2019,95(10):1-14.
    [33] LIU Z F, FRIGAARD N U, VOGL K, et al. Complete genome of ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum chlorobi[J]. Frontiers in Microbiology, 2012,3:185.
  • 期刊类型引用(9)

    1. 罗雪静,钟溢健,李金城,陆祖贤,王潇潇,李欣樾. 咖啡果胶水解液作为反硝化碳源的脱氮试验研究. 工业水处理. 2024(06): 117-126 . 百度学术
    2. 任笑笑,马晶晶,罗忆涵. 环境污水处理中微生物技术的运用. 工业微生物. 2023(01): 19-21 . 百度学术
    3. 黄涵,王继华. 污水处理厂中微生物群落特性与基因功能探究. 环境科学与技术. 2023(S1): 1-7 . 百度学术
    4. 郭燕燕,赵由才,宋立杰,兰兵,周涛. 微酸性电解水喷雾消毒对垃圾房生活垃圾微生物群落的影响. 环境污染与防治. 2023(03): 292-299 . 百度学术
    5. 郑金斌. 固定化微生物技术及其在废水处理中的运用. 低碳世界. 2023(08): 16-18 . 百度学术
    6. 吴佳璇,贾懿曼,王惠惠,沈玉君,孟海波,丁京涛,范盛远,周亚文,杨瑶瑶,金志帅,李丹阳,张爱琴. 组合式土壤渗滤系统处理三格化粪池出水性能及微生物群落变化研究. 环境工程. 2023(S2): 693-700+627 . 本站查看
    7. 吴桐桐,徐基胜,周云鹏,陈美淇,周谈坛,郭伟,陈金林,赵炳梓. 黄河三角洲不同生境土壤理化特性及细菌群落结构特征. 农业环境科学学报. 2022(10): 2250-2261 . 百度学术
    8. 郭雷,肖芃颖,袁港,季虹谷,向施吉,苏莉洪. 外源性海藻糖强化好氧脱氮菌处理高盐废水的菌群特性. 环境工程学报. 2022(10): 3448-3459 . 百度学术
    9. 李理,陈才,金泽坤,王友本. 生物滴滤池的微生物多样性分析及VOC降解菌的筛选. 华南理工大学学报(自然科学版). 2021(11): 57-68 . 百度学术

    其他类型引用(9)

  • 加载中
计量
  • 文章访问数:  214
  • HTML全文浏览量:  39
  • PDF下载量:  19
  • 被引次数: 18
出版历程
  • 收稿日期:  2020-03-16
  • 网络出版日期:  2021-07-19

目录

    /

    返回文章
    返回