中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

笼芯陶黑碳微珠去除模拟废水中铬

刘秀 刘立恒 刘睿 黄麟 林华 韦仲华 王敦球

刘秀, 刘立恒, 刘睿, 黄麟, 林华, 韦仲华, 王敦球. 笼芯陶黑碳微珠去除模拟废水中铬[J]. 环境工程, 2021, 39(3): 75-81. doi: 10.13205/j.hjgc.202103011
引用本文: 刘秀, 刘立恒, 刘睿, 黄麟, 林华, 韦仲华, 王敦球. 笼芯陶黑碳微珠去除模拟废水中铬[J]. 环境工程, 2021, 39(3): 75-81. doi: 10.13205/j.hjgc.202103011
LIU Xiu, LIU Li-heng, LIU Rui, HUANG Lin, LIN Hua, WEI Zhong-hua, WANG Dun-qiu. EXPERIMENTAL STUDY ON Cr REMOVAL FROM SIMULATED WASTEWATER BY CAGE CORE BLACK CARBON BEADS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 75-81. doi: 10.13205/j.hjgc.202103011
Citation: LIU Xiu, LIU Li-heng, LIU Rui, HUANG Lin, LIN Hua, WEI Zhong-hua, WANG Dun-qiu. EXPERIMENTAL STUDY ON Cr REMOVAL FROM SIMULATED WASTEWATER BY CAGE CORE BLACK CARBON BEADS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 75-81. doi: 10.13205/j.hjgc.202103011

笼芯陶黑碳微珠去除模拟废水中铬

doi: 10.13205/j.hjgc.202103011
基金项目: 

国家自然科学基金重点项目(51638006);广西高等学校高水平创新团队及卓越学者计划项目(002401013001);广西重点实验室研究基金项目(桂科能1401Z004,桂科能1801Z009);广西“八桂学者”岗位专项经费项目(刘会娟)。

详细信息
    作者简介:

    刘秀(1995-),女,硕士,主要研究方向为水污染控制。1354341775@qq.com

    通讯作者:

    刘立恒,博士,副研究员。deanhenry_liu01@126.com

EXPERIMENTAL STUDY ON Cr REMOVAL FROM SIMULATED WASTEWATER BY CAGE CORE BLACK CARBON BEADS

  • 摘要: 将笼芯陶黑碳微珠用于水溶液中铬的吸附去除,探讨了溶液初始pH、初始浓度、吸附温度、吸附时间、竹炭添加量对铬去除的影响,分析了铬去除的等温过程、动力学和热力学。结果表明:较低的溶液初始pH、较高的吸附温度、较长的吸附时间和较大的笼芯陶黑碳微珠添加量有利于铬的吸附去除;铬的去除更符合D-R模型和准二级动力学模型,其饱和吸附量可达到30.62 mg/g;铬去除过程的控速步骤为液膜扩散和颗粒内扩散联合控制,但以液膜扩散为主导;笼芯陶黑碳微珠对铬的去除是自发的、吸热的、以化学吸附为主的过程。
  • [1] RANGABHASHIYAM S, BALASUBRAMANIAN P. The potential of lignocellulosic biomass precursors for biochar production:performance, mechanism and wastewater application:a review[J]. Industrial Crops and Products, 2019, 128:405-423.
    [2] WAN Z H, CHO D W, TSANG D C W, et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate composite[J]. Environmental Pollution, 2019, 247:410-420.
    [3] DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:coexistence effect and mechanism[J]. Science of the Total Environment, 2018, 642:505-515.
    [4] YU J D, JIANG C Y, QUAN Q Q, et al. Enhanced removal of Cr(Ⅵ) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere, 2018, 195:632-640.
    [5] DIAO Z H, XU X R, CHEN H, et al. Simultaneous removal of Cr(Ⅵ) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2016, 316:186-193.
    [6] WU J, ZHENG H, ZHANG F, et al. Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(Ⅵ) removal[J]. Chemical Engineering Journal, 2019, 362:21-29.
    [7] LI P G, FU T, GAO X Y, et al. Adsorption and reduction transformation behaviors of Cr(Ⅵ) on mesoporous polydopamine/titanium dioxide composite nanospheres[J]. Journal of Chemical & Engineering Data, 2019, 64:2686-2696.
    [8] CHAKRABARTY T, AFRIN R, MIA M Y, et al. Phytoremediation of Chromium and some chemical parameters from Tannery effluent by using water Hyacinth (Eichhornia craassipes)[J]. Research in Agriculture Livestock & Fisheries, 2017, 4(3):151-156.
    [9] MAULION R V,HIWATIG K B,RENDON C J L, et al. Utilization of water hyacinth (Eichhorniacrassipes) for phytoremediation of hexavalent chromium in simulated wastewater[J]. Asia Pacific Journal of Multidisciplinary Research, 2015, 3(4):117-123.
    [10] CHERDCHOO W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(Ⅵ) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221:758-767.
    [11] ARSLANOGLU H, KAYA S, TVMEN F. Cr(Ⅵ) adsorption on low-cost activated carbon developed from grape marc-vinasse mixture[J]. Particulate Science and Technology, 2019,11:1-14.
    [12] WANG X D, LI C X, LI Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J].Ecotoxicology and Environmental Safety, 2019, 168:45-52.
    [13] WANG R, YOSHIMASA A, MOTOI M. Surface properties and water vapor adsorption-desorption characteristics of bamboo-based activated carbon[J]. Journal of Analytical and Applied Pyrolysis,2013, 104:667-674.
    [14] MOTOHIDE H, YOSHIMASA A, THIRAVETYAN P, et al. Preparation of bamboo chars and bamboo activated carbons to remove color and COD from Ink wastewater[J]. Water Environment Research, 2016, 88(1):87-96.
    [15] BEI C, YOSHIMASA A, MOTOI M. Preparation of bamboo-based oxidized biochar for simultaneous removal of Cd(Ⅱ) and Cr(Ⅵ) from aqueous solutions[J]. Desalination and Water Treatment, 2019, 168:269-281.
    [16] BING Z, YUNHAI W, PENG F. Bamboo charcoal modified with Cu2+ and 3-aminopropyl trimethoxy silane for the adsorption of acid fuchsin dye:optimization by response surface methodology and the adsorption mechanism[J]. Journal of Applied Polymer Science, 2019, 136(27):47728.
    [17] DUAN S B, WEI M, PAN Y Z, et al. Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (Ⅵ) removal from solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80:835-841.
    [18] YU J W, CHI C, ZHU B, et al. High adsorptivity and recycling performance activated carbon fibers for Cu(Ⅱ) adsorption[J]. Science of the Total Environment, 2020, 700:134412.
    [19] TANG Q, WANG K T, MUHAMMAD Y, et al. Synthesis of highly efficient porous inorganic polymer microspheres for the adsorptive removal of Pb2+ from wastewater[J]. Journal of Cleaner Production, 2018, 193:351-362.
    [20] SHARFILAHI S, GEETANJALI R, CHAUDHRYSAIF A. Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution:Thermodynamic, kinetic and isotherm studies[J]. Journal of Molecular Liquids, 2018, 264:275-284.
    [21] LIANG C H, ZHANG X D, FENG P, et al. ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics[J]. Chemical Engineering Journal, 2018, 344:95-104.
    [22] LIU L H, TANG C W, PENG Y L, et al. Modification of bentonite by Al/Mg-polymeric hydroxy for Cu2+, Cd2+, and Pb2+ removal from aqueous solutions[J]. Desalination and Water Treatment, 2019, 147:243-254.
    [23] WANG Y L, ZHANG N, CHEN D N, et al. Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(Ⅵ) from aqueous solutions[J]. Science of the Total Environment, 2019, 682:118-127.
    [24] CUI Y B, ATKINSO J D. Glycerol-derived magnetic mesoporous Fe/C composites for Cr(Ⅵ) removal, prepared via acid-assisted one-pot pyrolysis[J]. Chemosphere, 2019, 228:694-701.
    [25] JISEON J, DAESUNG L. Magnetite nanoparticles supported on organically modified montmorillonite for adsorptive removal of iodide from aqueous solution:optimization using response surface methodology[J]. Science of the Total Environment, 2018, 615:549-557.
    [26] YI Y H, LV J L, LIU Y, et al. Synthesis and application of modified Litchi peel for removal of hexavalent chromium from aqueous solutions[J]. Journal of Molecular Liquids, 2017, 225:28-33.
    [27] WANG X P, LU J, CAO B Y, et al. Facile synthesis of recycling Fe3O4/graphene adsorbents with potassium humate for Cr(Ⅵ) removal[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 560:384-392.
    [28] SHOKRY A, TAHANAYMAN L, IBRAHIM H, et al. The development of a ternary nanocomposite for the removal of Cr(Ⅵ) ions from aqueous solutions[J]. RSC Advances, 2019, 9:39187-39200.
    [29] CHERDCHOO W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(Ⅵ) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221:758-767.
    [30] NEMR A. Potential of pomegranate husk carbon for Cr(Ⅵ) removal from wastewater:kinetic and isotherm studies[J]. Journal of Hazardous Materials, 2009, 161(1):132-141.
    [31] GAO Q Y, LIN D G, FAN Y J, et al. Visible light induced photocatalytic reduction of Cr(Ⅵ) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19.
    [32] TAN C, RONG H, WANG H T, et al. Adsorption of heavy metals by biochar derived from municipal sewage sludge[J]. Journal of Tsinghua University, 2014, 54(8):1062-1067.
    [33] ALI A, SAEED K. Decontamination of Cr(Ⅵ) and Mn(Ⅱ) from aqueous media by untreated and chemically treated banana peel:a comparative study[J]. Desalination & Water Treatment,2015, 3(13):3586-3591.
    [34] TAO X M, WU Y H, CHA L G. Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (Ⅵ) and methyl orange[J]. Environmental Science and Pollution Research, 2019, 26:19828-19842.
    [35] DAKIKY M, KHAMIS M, MANASSRA A, et al. Eective adsorption of chromium (Ⅵ) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances in Environmental Research,2002, 6(4):533-540.
    [36] BABEL S, KURNIAWAN T. Cr(Ⅵ) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan[J]. Chemosphere,2004, 54, 951-967.
    [37] ALOTHMAN Z, ALI R, NAUSHAD M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell:adsorption kinetics, equilibrium and thermodynamic studies[J]. The Chemical Engineering Journal,2012, 184:238-247.
    [38] UCUN H, BAYHAN K, KAYA Y. Kinetic and thermodynamic studies of thebiosorption of Cr (Ⅵ) by Pinussylvestris Linn[J]. Journal of Hazardous Materials, 2008, 153:52-59.
    [39] YU S, YUAN G M, GAO H J, et al. Removal of Cr(Ⅵ) from aqueous solutions using polymer nanotubes[J]. Journal of Materials Science, 2020, 55:163-176.
    [40] OGATA F, UETA E I, KAWASAKI N. Characteristics of a novel adsorbent Fe-Mgtype hydrotalcite and its adsorption capability of As(Ⅲ) and Cr(Ⅵ) from aqueous solution[J].Journal of Industrial Engineering Chemistry, 2018, 59:56-63.
    [41] HVSEYIN D, KADIR S, BINGÖLBALI S. Equilibrium and kinetics characteristics of copper(Ⅱ) sorption onto gyttja[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84:147-151.
    [42] DURANOǦLU D, TROCHIMCZUK A W, BEKER U. Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer[J]. Chemical Engineering Journal, 2012, 187:193-202.
    [43] QIANWEI L, HANJIN L, JUNJIE G, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2018, 338:62-71.
    [44] SUN L, YUAN Z G, GONG W B, et al. The mechanism study of trace Cr(Ⅵ) removal from water using Fe0 nanorods modified with chitosan in porous anodic alumina[J]. Applied Surface Science, 2015, 328:606-613.
    [45] ZHANG X J, ZHANG L, LI A M. Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal[J]. Journal of Environmental Management, 2018, 206:989-998.
  • 加载中
计量
  • 文章访问数:  143
  • HTML全文浏览量:  26
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 网络出版日期:  2021-07-19

目录

    /

    返回文章
    返回