CONSTRUCTION OF ECOLOGICAL FLOATING ISLAND AND RESTORATION OF CAMPUS ARTIFICIAL LAKE EUTROPHICAITON
-
摘要: 从材料比表面积、承载植物量、耐低温能力和成本价格等角度对比塑料材质花盆式浮床和无纺纤维浮床的差异,确定无纺纤维浮床为构建生态浮岛的最佳载体基材。在无纺纤维浮岛上栽种泽泻、慈姑、茭白、香蒲、美人蕉、凤尾蕨、芦苇7种本土水生植物,考察其存活率、去污效果、管理难易以及美化景观等因素,并进行综合指标评分,确定香蒲和茭白为构建生态浮岛的最优植物。在此基础上,构建1个兼具水体净化和景观环境美化的新型生态浮岛,并以水体富营养化的校园人工湖作为处理对象,考察生态浮岛对污染水体的净化效果。结果表明,生态浮岛系统出水中的COD、TN和TP均达到GB 3838—2002《地表水环境质量标准》Ⅳ类水质标准。Abstract: By comparing the differences between the plastic flowerpot floating bed and the non-woven fiber floating bed from different aspects including specific surface area of material, carrying plant quantity, low temperature resistance and cost price, a non-woven fiber floating bed was determined to be the best carrier base material for the construction of ecological floating island. To study the survival rate, decontamination effect, management difficulty, landscaping, etc., seven species of native aquatic plants, including Alisma plantago-aquatica, Sagittaria trifolia, Zizania latifolia Stapf, Typha orientalis Presl, Canna indica, Pteris cretica, Phragmites communis, were planted on the non-woven fiber floating island, and comprehensive index scores were obtained, and Zizania latifolia Stapf and Typha orientalis Presl were found out as the good plants for the construction of ecological floating island. A new ecological floating island with both water purification and landscape beautification was constructed, and a campus artificial lake with eutrophication of water body was used as the treatment object to investigate the purification effect. The results showed that the COD, TN and TP of ecological floating island system effluent reached class Ⅳ limit value of Surface Water Environmental Quality Standard (GB 3838-2002).
-
[1] LIAO M N, YU G, GUO Y. Eutrophication in Poyang Lake (Eastern China) over the last 300 years in response to changes in climate and lake biomass[J]. PLoS One, 2017, 12(1):1-22. [2] SCHOEN M E, XUE X B, WOOD A, et al. Cost, energy, global warming, eutrophication and local luman health impacts of community water and sanitation service options[J]. Water Research, 2017, 109(2):186-195. [3] JIANG Q T, HE J Y, WU J P, et al. Assessing the severe eutrophication status and spatial trend in the coast waters of Zhejiang province (China)[J]. 2018, 64(1):3-17. [4] 陈昭明, 王伟, 赵迎, 等. 三峡水库支流水体富营养化现状及防治策略[J]. 环境工程, 2019, 37(4):32-37. [5] 李志刚, 朱江. 现代大学校园水景规划设计探讨[J]. 安徽农业科学, 2011, 39(29):18022-18025. [6] VYSTAVNA Y, HEJZLAR J, KOPÁǦEK. Long-term trends of phosphorus concentrations in an artificial lake:socio-economic and climate drivers[J]. PLoS One, 2017, 12(10):1-18. [7] 康孟新, 疏童. 北方高校景观水体富营养化评价研究[J]. 东北电力大学学报, 2016, 36(5):68-72. [8] 周云龙, 黄健峰, 林嘉. 华南师范大学人工湖水体富营养化及其对策研究[J]. 华南师范大学学报(自然科学版), 2010(1):82-87. [9] BAASTRUP-SPOHR L, SAND-JENSEN K, OLESEN S C H, et al. Recovery of lake vegetation following reduced eutrophication and acidification[J]. Freshwater Biology, 2017, 62(11):1847-1857. [10] SMOL M. The use of membrane processes for the removal of phosphorus from wastewater[J]. Desalination and Water Treatment, 2018, 128(1):397-406. [11] WANG S D, KONG L J, LONG J Y, et al. Adsorption of phosphorus by calcium-flour biochar:isotherm, kinetic and transformation studies[J]. Chemosphere, 2018, 195(3):666-672. [12] NOYMA N P, MAGALHÃES L D, FURTADO L L, et al. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants ans phosphorus adsorbing natural soil and modified clay[J]. Water Research, 2016, 97(6):26-38. [13] 岳云征. 氧化剂对藻毒素的作用效果对比[J]. 化学工程与装备, 2016(9):44-45. [14] ANSARI A A, TRIVEDI S, K, KHAN F A, et al. Phytoremediation of eutrophic waters[J]. Phytoremediation, 2015, 28(1):41-50. [15] 付惠玲. 新材料生物膜反应器净化富营养化水及其功能菌群解析[D]. 金华:浙江师范大学, 2016. [16] LIU J L, LIU J K, ANDERSON J T, et al. Potential of aquatic macrophytes and artificial floating island for removing contaminants[J]. Plant Biosystems, 2016, 150(4):1-8. [17] NATHALIE M G. The floating island project:self-organizing complexity[J]. Proceedings, 2017, 173(1):1-3. [18] YEH N, YEH P, CHANG Y H. Artificial floating islands for environmental improvement[J]. Renewable and sustainable energy reviews, 2015, 47(7):616-622. [19] 孙真, 陈涵肖, 付尚礼, 等. 生态浮岛处理微污染水体综述[J]. 环境工程, 2018, 36(12):10-15. [20] 张莹琦, 贺菊花, 程刚. 生态浮岛技术用于河湖污染修复进展研究[J]. 环境科学与管理, 2015(6):138-142. [21] 陈乐, 朱静. 泽泻科泽泻属和慈姑属的研究[J]. 哈尔滨师范大学自然科学学报, 2010, 26(5):92-93, 98. [22] ASAEDA T, SIONG K. Dynamics of growth, carbon and nutrient translocation in Zizania latifolia[J]. Ecological Engineering, 2008, 32(2):156-165. [23] WANG P H, ZHANG H, ZUO J, et al. A hardy plant facilitates nitirogen removal via microbial communities in subsurface flow constructed wetlands in winter[J]. Scientific Reports, 2016, 9:1-13. [24] LIU J, YI N K, WANG S, et al. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater[J]. 2016, 94(9):546-573. [25] 陈毓华, 汪俊三. 华南地区11种高等水生维管植物净化城镇污水效益评价[J]. 农村生态环境, 1995(1):26-29. [26] 国家环境保护总局. 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [27] 周振兴, 黄田, 张劲, 等. 浮床栽培茭白的生物学特征及水质净化作用研究[J]. 四川环境, 2007(5):1-4. [28] 杨可昀, 宋海亮, 黄诗蓓, 等. 根系分泌物调控对人工湿地去除雌激素的影响[J]. 环境科学研究, 2016, 29(1):59-66.
点击查看大图
计量
- 文章访问数: 422
- HTML全文浏览量: 46
- PDF下载量: 21
- 被引次数: 0