OPERATION REGULATION OF WASTEWATER TREATMENT PLANT WITH LOW CARBON-TO-NITROGEN RATIO INFLUENT BASED ON WHOLE PROCESS ANALYSIS METHOD
-
摘要: 为使某污水处理厂出水达标排放,对该厂进行了全流程测试,分析其主要污染物沿工艺流程分布特征以及活性污泥特性,评估工艺运行现状,为该污水处理厂优化调控提供基础数据。研究发现,该厂进水ρ(BOD5)/ρ(TN)仅为2.45,属于典型的低碳氮比进水。此外,通过活性污泥特性测试发现,反硝化潜力为9.0 mg/(g·h),反硝化菌群相对丰度较高。进水碳源不足及外部碳源投加位点设置不合理是该厂无法实现TN达标排放的主要原因。在采取改变碳源投加位点、减小好氧池末端曝气量、增加碳源投加量等措施后,出水ρ(TN)由32.0 mg/L降至12.7 mg/L,实现了TN的达标排放;此外,厌氧释磷潜力由1.3 mg/(g·h)提升至2.6 mg/(g·h),生物除磷能力也有了较大提升。研究提供了一种解决污水处理厂出水水质超标问题的思路,可为含低碳氮比进水的城镇污水处理厂运行调控及稳定达标提供参考。Abstract: In order to make the effluent of a wastewater treatment plant(WWTP) reach the emission standard, the whole process test was carried out. After analyzing the changes of pollutants along the process as well as the characteristics of activated sludge and assessing the current status of process operation, basic data for optimal regulation was provided. The study found that the BOD5 to total nitrogen (TN) ratio of the influent was only 2.45, which belonged to low carbon-to-nitrogen ratio influent. In addition, the activated sludge characteristics test found that the denitrification potential was 9.0 mg/(g·h), and the relative abundance of denitrifying bacteria was high. Therefore, insufficient carbon source in the influent and unreasonable dosing site of external carbon source were the main reasons for the poor nitrogen removal effect of the WWTP. The total nitrogen of the effluent was reduced from 32.0 mg/L to 12.7 mg/L by changing the carbon source dosing site, reducing the aeration volume of the biochemical reaction tank and increasing the amount of carbon source dosing, which realized the standard discharge of total nitrogen. In addition, the anaerobic phosphorus release potential increased from 1.3 mg/(g·h) to 2.6 mg/(g·h), which meant that the biological phosphorus removal capacity had also been greatly improved. This study provided a way to discover and solve problems in WWTPs with effluent exceeding the standard, which provided references for controlling operation and reaching standard for discharge of WWTPs with low carbon-to-nitrogen ratio influent.
-
[1] 祝成成,徐莎. 一种改良双污泥颗粒系统强化低碳氮比污水脱氮除磷的新工艺[J]. 工业安全与环保,2018,44(3):99-103. [2] 陈燕平,陈小波,徐程, 等. 水体富营养化植物控制工程技术方法[J]. 人民珠江,2018,39(6):41-46. [3] LI L, DONG Y H, QIAN G S, et al. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen[J]. Bioresource Technology, 2018, 258:168-176. [4] FENG L J, RONG J, ZHEN Z, et al. Simultaneous nitrification-denitrification and microbial community profile in an oxygen-limiting intermittent aeration SBBR with biodegradable carriers[J]. Biodegradation, 2018, 29(5):473-486. [5] 张岩,马翔山,郭威, 等. 新型IEM-UF耦合短程硝化反硝化系统脱氮特性[J]. 中国环境科学,2018,38(2):542-550. [6] 唐建国,张悦,梅晓洁. 城镇排水系统提质增效的方法与措施[J]. 给水排水,2019,55(4):30-38. [7] 王春喜,余关龙,张登祥, 等. 固定化反硝化菌联合固体碳源小球处理低碳氮比污水的性能研究[J]. 环境污染与防治,2018,40(8):870-874. [8] 马海良,侯雅如, 李珊珊. 工业废水排放与经济增长脱钩的省际差异研究[J]. 中国人口·资源与环境,2017,27(11):185-192. [9] 李斐,宋英豪,王敏, 等. 水解反硝化+A/O工艺处理低碳氮比城镇废水试验研究[J]. 环境工程,2016,34(11):23-28. [10] 刘文如,顾广发,宋小康, 等. 不同溶解氧浓度下硝化工艺中微生物种群结构对比[J]. 环境科学,2019,40(8):3706-3712. [11] 吴代顺,方燕蓝. 氧化沟工艺污水处理厂的活性污泥特性分析[J]. 中国给水排水,2018,34(11):109-113. [12] 罗固源,张园,许晓毅. SUFR系统中活性污泥特性及反硝化除磷稳定性[J]. 环境科学研究,2011,24(1):85-89. [13] FOCHT D D, CHANG A C. Nitrification and denitrification processes related to waste water treatment[J]. Advances in Applied Microbiology, 1975, 19:153-186. [14] 陈明飞,郑凯凯,王燕, 等. 基于全流程分析的污水厂高硝态氮进水优化运行[J]. 中国给水排水,2019,35(17):118-122,128. [15] 闫沛涵,兰书焕,涂卫国, 等. 反硝化菌YYD4强化生物滤池处理低碳氮比污水效果研究[J]. 环境科学与技术,2019,42(7):83-87. [16] 牟晓杰,兴土,仝川, 等. 人为干扰对闽江河口湿地土壤硝化-反硝化潜力的影响[J]. 中国环境科学,2013,33(8):1413-1419. [17] 苗志加. 强化生物除磷系统聚磷菌的富集反硝化除磷特性[D].北京:北京工业大学, 2013. [18] 钱萌萌,陈静,康紫薇, 等.SBR污水处理工艺中磷的转化及去除机理研究[J]. 广东化工,2018,45(20):17-19. [19] 杨青,甘树应,刘遂庆. 二沉池反硝化浮泥产生机理及避免措施[J]. 中国给水排水,2002,18(10):68-70.
点击查看大图
计量
- 文章访问数: 224
- HTML全文浏览量: 17
- PDF下载量: 15
- 被引次数: 0