SITE SELECTION OF WASTE TRANSFER STATION BASED ON NUMERICAL SIMULATIONS OF ODOR DISPERSION
-
摘要: 城市垃圾中转站恶臭气体扩散问题是居民非常关注的焦点。采用计算流体力学方法对某拟建垃圾中转站和周围建筑物附近的流场和可能泄漏的恶臭气体的扩散进行了数值模拟,分析了不同风速和风向对流场结构和恶臭气体扩散特性的影响规律。结果表明:在相同风向不同风速下,无因次化流场结构基本相同;风速高时恶臭气体迅速扩散,不影响周围建筑物;接近静风时,恶臭气体能够扩散至垃圾中转站的连体建筑和南侧学生宿舍,但浓度已降低约3个数量级;风速接近静风的东风和南风条件下,恶臭气体扩散快,影响区域有限。总体上,该拟建垃圾中转站的选址合理。该研究过程可为类似项目选址的合理性评判提供科学参考。
-
关键词:
- 垃圾中转站 /
- 恶臭气体扩散 /
- 计算流体力学(CFD) /
- 组分输运模型 /
- 数值模拟
Abstract: Odor dispersion in urban waste transfer stations is the focus of local residents attention. In this study, we numerically simulated the flow fields and odor dispersion around an urban waste transfer station to be constructed, by using computational fluid dynamics methods. The effect of wind speeds and wind directions on the flow and dispersion were investigated in detail. The results showed that normalized flow fields were almost the same, if we changed the wind speeds but kept constant wind direction. Wind speed, however, had great influence on the odor dispersion. The odor dispersed quite quickly at high wind speeds. But the odor dispersed slowly when winds were almost stationary, and it could spread to the building connecting to the waste transfer station and to the southern student accommodation, with the odor concentration three magnitude orders lower than initial one. For east and south wind, we find that the odor dispersed quite quickly, then the affected region was very small. The site selection of the investigated waste station was proved reasonable. -
[1] 张志,贺晶莹,侯晓辉. 郑州市城市生活垃圾处理问题及对策[J]. 环境卫生工程,2014,22(5):54-55,59. [2] 王利娟,韩雪芳,徐东洋. 城市地下垃圾中转站选址-分配问题研究[J]. 重庆师范大学学报(自然科学版),2020,37(2):12-21. [3] 方晶晶,章骅,吕凡,等. 生活垃圾收运过程中恶臭暴露的健康风险评估[J]. 中国环境科学,2015,35(3):906-916. [4] 杨芳,何羿,赵志杰. 城市市政基础设施的邻避效应评价方法研究[J]. 北京大学学报(自然科学版),2017,53(3):518-524. [5] 韦吉社,张健. 上海中心城区一体式生活垃圾中转站外部空间构成要素分析[J]. 华中建筑,2014(7):52-57. [6] 邹平洲,何枝贵,许岩,等. 城市垃圾压缩中转站恶臭气体综合防治技术[J]. 环境保护科学,2018,44(6):106-111. [7] 曹伟华,王艳明,石广甫,等. 青岛市太原路固体废弃物中转站迁建工程设计关键技术[J]. 工程建设与设计,2015(增刊1):135-137. [8] SOMMER-QUABACH E, PIRINGER M, PETZ E, et al. Comparability of separation distance between odour sources and residential areas determined by various national odour impact criteria[J]. Atmospheric Environment, 2014, 95:20-28. [9] SANTOS J M, REIS JR N C, GOULART E V, et al. Numerical simulation of flow and dispersion around an isolated cubical building:the effect of the atmospheric stratification[J]. Atmospheric Environment, 2009,43:5484-5492. [10] DOURADO H O, SANTOS J M, REIS JR N C, et al. Numerical modelling of odour dispersion around a cubical obstacle using large eddy simulation[J]. Water Science & Technology, 2012, 66(7):1549-1557. [11] LIN X J, BARRINGTON S, GONG G, et al. Simulation of odour dispersion downwind from natural windbreaks using the computational fluid dynamics standard k-ε model[J]. Journal of Environmental Engineering and Science, 2013, 8(2):238-254. [12] CHEMEL C, RIESENMEY C, BATTON-HUBERT M, et al. Odour-impact assessment around a landfill site from weather-type classification, complaint inventory and numerical simulation[J]. Journal of Environmental Management, 2012, 93:85-94. [13] FERRERO E, MANOR A, MORTARINI L, et al. Concentration fluctuations and odor dispersion in Lagrangian models[J]. Atmosphere, 2020, 11(1):27. [14] YEUNG P K,XU S,DONZIS D A,et al. Simulations of three-dimensional turbulent mixing for Schmidt numbers of the order 1000[J]. Flow, Turbulence and Combustion, 2004,72:333-347. [15] SREENIVASAN K R. Turbulent mixing:a perspective[J]. PNAS, 2019,116(37):18175-18183. [16] 杨志斌,袁德奎. 基于FLUENT城市大气污染物扩散数值模拟[J]. 环境工程学报,2016,10(3):1365-1369.
点击查看大图
计量
- 文章访问数: 219
- HTML全文浏览量: 46
- PDF下载量: 12
- 被引次数: 0