RESEARCH PROGRESS OF BIOMASS PYROLYSIS AND BIO OIL UPGRADING
-
摘要: 热解是目前生物质能源化的主要方法,生物质热解技术已得到广泛研究。基于文献资料,总结了不同种类的简单生物质(蛋白质、糖类、木质素)和复杂生物质(藻类、秸秆、木屑和脂类)热解的主要产物,指出了部分产物在不同条件下的产率变化趋势。同时分析了聚合度对纤维素热解产物的影响,对比了纤维素和半纤维素的热解特点,介绍了木质素中的部分基团对其热解的影响,并分析了热解温度、加热速率以及停留时间对藻类、秸秆、木屑和复杂脂类热解产物的影响。最后介绍了2种生物油提质方法(催化加氢和催化裂解)的特点,对于催化裂解中催化剂提质效果进行了归纳总结。Abstract: Pyrolysis is the main way to transform biomass into energy, and the technology of biomass pyrolysis has been widely studied. Based on literatures, the main pyrolysis products of different kinds of simple biomass (protein, carbohydrate, lignin) and complex biomass (algae, straw, sawdust and lipid) were summarized, and the yield change trend of some products under different conditions was pointed out. At the same time, this paper analyzed the influence of polymerization degree on the pyrolysis products of cellulose, compared the pyrolysis characteristics of cellulose and hemicellulose, and introduced the influence of some groups in lignin on its pyrolysis. Then, the impact of pyrolysis temperature, heating rate and residence time on the pyrolysis products of algae, straw, sawdust and complex lipids were analyzed. The characteristics of the two methods (catalytic hydrogenation and catalytic cracking) for improving the quality of bio oil were introduced, and the effect of catalyst in catalytic cracking was summarized.
-
Key words:
- biomass /
- pyrolysis /
- bio oil /
- molecular sieve
-
[1] GOYAL H B, SEAL D, SAXENA R C. Bio-fuels from thermochemical conversion of renewable resources:a review[J]. Renewable & Sustainable Energy Reviews, 2008,12(2):504-517. [2] ELLIOTT D C. Thermochemical Processing of Biomass:conversion into Fuels, Chemicals and Power[M]. Isr Med J,2011. [3] 李全林.新能源与可再生能源[M].南京:东南大学出版社,2009. [4] ANEX R P, ADEN A, KAZI F K, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways[J]. Fuel, 2010,89(S1):S29-S35. [5] WRIGHT M M, DAUGAARD D E, SATRIO J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels[J]. Fuel, 2010,89(S1):S2-S10. [6] BROWN, Tristan R, THILAKARATNE, et al. Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing[J]. Fuel, 2013,106:463-469. [7] SWANSON R M, PLATON A, SATRIO J A, et al. Techno-economic analysis of biomass-to-liquids production based on gasification[J]. Fuel, 2010,89(11):S11-S19. [8] WANG S R, DAI G X, YANG H P, et al. Lignocellulosic biomass pyrolysis mechanism:a state-of-the-art review[J]. Progress in Energy & Combustion Science, 2017,62:33-86. [9] SHEN D, XIAO R, GU S, et al. ChemInform abstract:the pyrolytic behavior of cellulose in lignocellulosic biomass:a review[J]. RSC ADVANCES, 2011,1(9):1641. [10] 张旭东.生物质快速热解制取生物油试验研究[D].郑州:郑州大学,2014. [11] 陈清文.生物质再燃脱硝机理的研究[D].济南:山东建筑大学,2014. [12] 刘超.杨木木质素的热解特性及模型物的热解机理研究[D]. 广州:华南理工大学,2015. [13] MA Q L, HAN L J, HUANG G Q. Evaluation of different water-washing treatments effects on wheat straw combustion properties[J]. Bioresource Technology, 2017,245(Pt.A):1075-1083. [14] CHEN D Y, LI Y J, DENG M S, et al. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood[J]. Bioresource Technology, 2016,214:615-622. [15] XU L J, YAO Q, ZHANG Y, et al. Integrated production of aromatic amines and N-Doped carbon from lignin via ex Situ catalytic fast pyrolysis in the presence of ammonia over zeolites[J]. Acs Sustainable Chemistry & Engineering,2017,5(4):2960-2969. [16] GENUINO H C, MUIZENBELT I, HEERES A, et al. An improved catalytic pyrolysis concept for renewable aromatics from biomass involving a recycling strategy for co-produced polycyclic aromatic hydrocarbons[J]. Green Chemistry, 2019,21(14). [17] CARPENTER D, WESTOVER T, HOWE D, et al. Catalytic hydroprocessing of fast pyrolysis oils:impact of biomass feedstock on process efficiency[J]. Biomass & Bioenergy, 2017,96:142-151. [18] 李菲斐,郝菊芳,郭吉兆,等.5种氨基酸热失重行为及其热解生成氢氰酸的研究[J].烟草科技,2012(3):31-33. [19] HANSSON K M, MAND L E, HABERMANN A, et al. Pyrolysis of poly-l-leucine under combustion-like conditions[J]. [20] CHEN H P, XIE Y P, CHEN W, et al. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019,196:320-329. [21] LI J, WANG Z Y, YANG X, et al. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR[J]. Journal of Analytical & Applied Pyrolysis, 2007,80(1):247-253. [22] SUNG-SEEN C, JI-EUN K. Analysis of cyclic pyrolysis products formed from amino acid monomer[J]. Journal of Chromatography A, 2011,1218(46):8443-8455. [23] KWON G J, KIM D Y, KIMURA S, et al. Rapid-cooling, continuous-feed pyrolyzer for biomass processing:preparation of levoglucosan from cellulose and starch[J]. Journal of Analytical & Applied Pyrolysis, 2007,80(1):1-5. [24] METTLER M S, PAULSEN A D, VLACHOS D G, et al. The chain length effect in pyrolysis:bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012,14(5):1284-1288. [25] CHEN L M, LIAO Y F, GUO Z G, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019,232:1309-1320. [26] METTLER M S, PAULSEN A D, VLACHOS D G, et al. The chain length effect in pyrolysis:bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012,14(5):1284-1288. [27] GAO Z X, LI N, YIN S Y, et al. Pyrolysis behavior of cellulose in a fixed bed reactor:residue evolution and effects of parameters on products distribution and bio-oil composition[J]. Energy, 2019,175:1067-1074. [28] MAZEAU K, HEUX L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2008,107(10):2394-2403. [29] KIM U J, EOM S H, WADA M. Thermal decomposition of native cellulose:influence on crystallite size[J]. Polymer Degradation & Stability, 2010,95(5):778-781. [30] WANG Z, MCDONALD A G, WESTERHOF R J M, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis[J]. Journal of Analytical & Applied Pyrolysis, 2013,100(3):56-66. [31] RÄISÄNEN U, PITKÄNEN I, HALTTUNEN H, et al. Formation of the main degradation compounds from arabinose, xylose, mannose and arabinitol during pyrolysis[J]. Journal of Thermal Analysis & Calorimetry, 2003,72(2):481-488. [32] ZHOU X M, LI W J, MABON R, et al. A Critical Review on Hemicellulose Pyrolysis[J]. Energy Technology, 2017,5. [33] SHEN D K, JIN W, HU J, et al. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals:Structures, pathways and interactions[J]. Cheminform, 2015,51(6):761-774. [34] MOLDOVEANU S C. Pyrolysis of organic molecules with applications to health and environmental issues[M]. 2010. [35] WERNER K, POMMER L, BROSTRÖM M. Thermal decomposition of hemicelluloses[J]. Journal of Analytical & Applied Pyrolysis, 2014,110:130-137. [36] WANG S R, RU B, LIN H Z, et al. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles[J]. Bioresource Technology, 2013,143(17):378-383. [37] GÍRIO F M, FONSECA C, CARVALHEIRO F, et al. Hemicelluloses for fuel ethanol:a review[J]. Bioresource Technology, 2010,101(13):4775-4800. [38] WANG S R, LIN H Z, LI Z, et al. Structural characterization and pyrolysis behavior of cellulose and hemicellulose isolated from softwood Pinus armandii franch[J]. Energy & Fuels, 2016,30(7):5721-5728. [39] PONDER G R, RICHARDS G N. Thermal synthesis and pyrolysis of a xylan[J]. Carbchydrate Research, 1991,218:143-155. [40] WANG S R, RU B, LIN H Z, et al. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods[J]. Fuel, 2015,150:243-251. [41] BALL R, MCINTOSH A C, BRINDLEY J. Feedback processes in cellulose thermal decomposition:implications for fire-retarding strategies and treatments[J]. Combustion Theory & Modelling, 2004,8(2):281-291. [42] YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12/13):1781-1788. [43] GODFREY, Neutelings. Lignin variability in plant cell walls:contribution of new models[J]. Plant Science, 2011,181(4):379-386. [44] COLLARD F X, BLIN J. A review on pyrolysis of biomass constituents:mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renewable & Sustainable Energy Reviews, 2014,38(5):594-608. [45] KUMAR A, ANUSHREE, KUMAR J, et al. Utilization of lignin:a sustainable and eco-friendly approach[J]. Journal of the Energy Institute, 2019,93(1):235-271. [46] TIPPAYAWONG N, KINORN J, THAVORNUN S. Yields and gaseous composition from slow pyrolysis of refuse-derived fuels[J]. Energy Sources, 2008,30(17):1572-1580. [47] I. J M, G. R M, AHMED C A, et al. Biofuels production through Biomass Pyrolysis:a Technological Review[J]. Energies, 2012,5(12):4952-5001. [48] MU W, BEN H X, RAGAUSKAS A, et al. Lignin Pyrolysis Components and Upgrading-Technology Review[J]. Bioenergy Research, 2013,6(4):1183-1204. [49] SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. 2004,83(11/12):1469-1482. [50] WANG S R, RU B, LIN H Z, et al. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J]. Bioresource Technology, 2015,182:120-127. [51] LIU C, HU J, ZHANG H Y, et al. Thermal conversion of lignin to phenols:relevance between chemical structure and pyrolysis behaviors[J]. Fuel, 2016,182:864-870. [52] KAWAMOTO H, HORIGOSHI S, SAKA S. Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic lignin model dimer[J]. Journal of Wood Science, 2007,53(3):268-271. [53] KAWAMOTO H, SAKA S. Role of side-chain hydroxyl groups in pyrolytic reaction of phenolic β-Ether type of lignin dimer[J]. Journal of Wood Chemistry & Technology, 2007,27(2):113-120. [54] 田军,王镜岩.一本具有旺盛生命力的教材:介绍《生物化学》(第三版)[J].中国大学教学,2004(1):57-58. [55] ASOMANING J, MUSSONE P, BRESSLER D C. Two-stage thermal conversion of inedible lipid feedstocks to renewable chemicals and fuels[J]. Bioresource Technology,2014,158:55-62. [56] SHARREL R, N A A, MATHACHAN A E, et al. Sustainability and life cycle assessments of lignocellulosic and algal pretreatments[J]. Bioresource Technology, 2020,301:122678. [57] SHARMA P, SAHARIA M, SRIVASTAVA R, et al. Tailoring microalgae for efficient biofuel production[J]. Frontiers in Marine Science, 2018,5. [58] PENG W M, WU Q Y, TU P G. Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides[J]. Journal of Applied Phycology, 2000,12(2):147-152. [59] CHEN H H, ZHOU D, LUO G, et al. Macroalgae for biofuels production:progress and perspectives[J]. Renewable & Sustainable Energy Reviews, 2015,47:427-437. [60] YU J L, KRISTINA M, ARASH T. A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis[J]. Bioresource Technology, 2018,270:689-701. [61] YANG C Y, LI R, ZHANG B, et al. Pyrolysis of microalgae:a critical review[J]. Fuel Processing Technology, 2019,186:53-72. [62] WANG S, WANG Q, JIANG X M, et al. Compositional analysis of bio-oil derived from pyrolysis of seaweed[J]. Energy Conversion & Management, 2013,68(3):273-280. [63] MA C T, GENG J G, ZHANG D, et al. Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil[J]. Journal of the Energy Institute, 2019,93(1):303-311. [64] YANIK J, STAHL R, TROEGER N, et al. Pyrolysis of algal biomass[J]. Journal of Analytical & Applied Pyrolysis, 2013,103(9):134-141. [65] YOON JU B, CHANGKOOK R, JONG-KI J, et al. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae[J]. Bioresource Technology, 2011,102(3):3512-3520. [66] 陈莉,温康鑫,杜智,等.热解条件对秸秆热解特性及生物炭产率的影响[J].哈尔滨工业大学学报,2020,52(11):26-32. [67] SUN J N, HE F H, PAN Y H, et al. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types[J]. Acta Agriculturae Scandinavica, 2016,67(1):12-22. [68] UKAEW S, SCHOENBORN J, KLEMETSRUD B, et al. Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw[J]. Journal of Analytical & Applied Pyrolysis,2018,129:112-122. [69] JUNG S H, KANG B S, KIM J S. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system[J]. Journal of Analytical & Applied Pyrolysis,2008,82(2):240-247. [70] CHEN Z H, HU M, ZHU X L, et al. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis[J]. Bioresource Technology, 2015,192:441-450. [71] TANGLEI S, ZAIFENG L, ZHIPING Z, et al. Fast corn stalk pyrolysis and the influence of catalysts on product distribution[J]. Bioresource Technology, 2020,301:122739. [72] WANG Z, DAN D, LIN W G, et al. Catalytic pyrolysis of corn straw fermentation residue for producing alkyl phenols[J]. Renewable Energy, 2017,109:287-294. [73] CAI J M, XU D, DONG Z J, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis:case study of corn stalk[J]. Technology & Development of Chemical Industry, 2006,82(3):2705-2715. [74] QU W, LIN W, JULSON J. An exploration of improving the properties of heavy bio-oil[J]. Energy & Fuels, 2013,27(8):4717-4722. [75] BERTERO,GOROSTEGUI,HORACIO A,et al.Characterization of the liquid products in the pyrolysis of residual chañar and palm fruit biomasses[J]. Fuel,2014,116(4):409-414. [76] SALEHI E, ABEDI J, HARDING T. Bio-oil from sawdust:pyrolysis of sawdust in a fixed-bed system[J]. Energy & Fuels, 2009,23(7):3767-3772. [77] PARIHAR M F, KAMIL M, GOYAL H B, et al. An experimental study on pyrolysis of biomass[J]. Process Safety & Environmental Protection, 2007,85(5):458-465. [78] PVTVN F A E P. Fast pyrolysis of sesame stalk:yields and structural analysis of bio-oil[J]. Journal of Analytical & Applied Pyrolysis, 2004,71(2):779-790. [79] WANG X, SHENG L L, YANG X Y. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp[J]. Bioresource Technology,2017,229:119-125. [80] JI X, LIU B, CHEN G T, et al. The pyrolysis of lipid-extracted residue of Tribonema minus in a fixed-bed reactor[J]. Journal of Analytical & Applied Pyrolysis,2015,116:231-236. [81] ALVAREZ J, LOPEZ G, AMUTIO M, et al. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor[J]. Fuel,2014,128:162-169. [82] DAVID E, KOPAC J. Pyrolysis of rapeseed oil cake in a fixed bed reactor to produce bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2018,134:495-502. [83] DAVID E, KOPAC J. Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors[J]. Journal of Analytical & Applied Pyrolysis, 2019,141:104638. [84] ZHAO B, O'CONNOR D, ZHANG J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018,174:977-987. [85] KARAOSMANOGLU F, ISIGIGUR-ERGUDENLER A, SEVER A. Biochar from the straw-stalk of rapeseed plant[J]. Energy & Fuels, 2012,14(2):336-339. [86] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014,99(3):19-33. [87] HUBER G W, SARA I, AVELINO C. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006,106(9):4044-4098. [88] MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy & Fuels, 2006,20(3):848-889. [89] DOMÍNGUEZ A, MENÉNDEZ J A, FERNÁNDEZ Y, et al. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J]. Journal of Analytical and Applied Pyrolysis, 2006,79(1/2):128-135. [90] DU Z Y, MOHR M, MA X C, et al. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content[J]. Bioresource Technology, 2012,120:13-18. [91] VISPUTE T P, ZHANG H, SANNA A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010,330(6008):1222-1227. [92] ZHENG A Q, ZHAO K, ZHAO Z L, et al. Fast Pyrolysis of nitrogen-rich wood waste pretreated by microwave-assisted glycerolysis[J]. Waste & Biomass Valorization, 2017,8:349-358. [93] ELLIOTT D C, BECKMAN D, BRIDGWATER A V, et al. Developments in direct thermochemical liquefaction of biomass:1983-1990[J]. Energy & Fuels, 1991,5(3):399-410. [94] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass & Bioenergy, 2012,38(2):68-94. [95] YANG Y, OCHOA-HERNÁNDEZ C, PIZARRO P, et al. Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions[J]. Applied Catalysis B Environmental, 2016,197:206-213. [96] ZHANG X H, WANG T J, MA L L, et al. Production of cyclohexane from lignin degradation compounds over Ni/ZrO2-SiO2 catalysts[J]. Applied Energy, 2013,112(4):533-538. [97] ZHANG X H, CHEN L G, KONG W, et al. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process[J]. Energy, 2015,84:83-90. [98] ROCHA J D, LUENGO C A, SNAPE C E. Hydrodeoxygenation of oils from cellulose in single and two-stage hydropyrolysis[J]. Renewable Energy, 1996,9(1/2/3/4):950-953. [99] AYSU T, OLA O, MAROTO-VALER M M, et al. Effects of titania based catalysts on in-situ pyrolysis of Pavlova microalgae[J]. Fuel processing Technology, 2017,166:291-298. [100] HAN G, LEE M W, PARK S, et al. Revealing the factors determining the selectivity of guaiacol HDO reaction pathways using ZrP-supported Co and Ni catalysts[J]. Journal of Catalysis, 2019,377:343-357. [101] YORGUN S, ŞIMŞEK Y E. Catalytic pyrolysis of Miscanthus×giganteus over activated alumina[J]. Bioresource Technology, 2008,99(17):8095-8100. [102] AYSU T, RAHMAN N A A, SANNA A. Catalytic pyrolysis of Tetraselmis and Isochrysis microalgae by nickel ceria based catalysts for hydrocarbon production[J]. Energy, 2016,103:205-214. [103] OSMUNDSEN C M, YANG X, VOSS B, et al. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy & environmental science:EES, 2011,4(3):793-804. [104] PAN P, HU C W, YANG W Y, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils[J]. Bioresource Technology, 2010,101(12):4593-4599. [105] ZHOU G F, JENSEN P A, LE D M, et al. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst[J]. Green Chemistry, 2016,18(7):1965-1975. [106] DAVID E, KOPAČ J. Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors[J]. Journal of Analytical and Applied Pyrolysis, 2019,141:104638. [107] CAMPANELLA A, HAROLD M P. Fast pyrolysis of microalgae in a falling solids reactor:effects of process variables and zeolite catalysts[J]. Biomass & Bioenergy, 2012,46(1):218-232. [108] ZHENG Y W, WANG F, YANG X Q, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical & Applied Pyrolysis,2017,126:169-179. [109] 时艳.微藻快速催化裂解制取生物油[D].青岛:青岛科技大学,2013. [110] GAO L J, SUN J H, XU W, et al. Catalytic pyrolysis of natural algae over Mg-Al layered double oxides/ZSM-5(MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content[J]. Bioresource Technology, 2017,225:293-298.
点击查看大图
计量
- 文章访问数: 919
- HTML全文浏览量: 83
- PDF下载量: 16
- 被引次数: 0