INFLUENCING FACTORS OF THE SCALE OF FOOD WASTE TREATMENT IN CHINA: STATISTICAL ANALYSIS
-
摘要: 为了探明我国餐厨垃圾资源化项目处理规模的影响因素,采用有序logistic回归对29个国家级餐厨垃圾处理试点项目进行统计学分析,考察人均GDP水平、服务人口、处理工艺以及地理位置对餐厨垃圾处理规模的影响,并建立相关的回归预测模型。结果显示:处理工艺和地理位置对项目处理规模的影响不显著(P>0.05),而人均GDP水平和服务人口会显著影响餐厨垃圾的处理规模(P分别为0.007和0.013),其中,服务人口对处理规模的影响更大。由此可见,为确定合理的餐厨垃圾处理规模,应重点考虑服务人口和城市人均GDP水平。基于此,建立了餐厨垃圾资源化处理规模的回归预测模型,该模型的准确性检验可达到75.86%,对于餐厨垃圾处理规模决策分析及合理评估具有参考意义。Abstract: In order to ascertain the influencing factors of the treatment scale of food waste treatment projects, this article used ordinal logistic regression to perform a statistical analysis on 29 national-level food waste treatment pilot projects, examined the influence of four factors including GDP per capita, service population, treatment process and geographic location on the scale of food waste treatment, and established a related regression prediction model. The results showed that the treatment process and geographic location had no significant impact on the scale of food waste treatment (P>0.05), while the per capita GDP and service population would significantly affect the processing scale of food waste treatment (P=0.007, P=0.013, respectively), in which the service population had a greater impact on the processing scale. Therefore, in order to determine a reasonable scale of food waste treatment, it was important to consider the serving population and per capita GDP level. Based on this, a regression prediction model for the scale of resource processing of food waste was established, and the accuracy of the model could reach 75.86%. This model had important reference and reference significance for the decision-making analysis and reasonable evaluation of the scale of food waste treatment.
-
Key words:
- food waste /
- treatment scale /
- statistical analysis /
- service population /
- per capita GDP /
- regression prediction model
-
[1] 国家发展改革委,住房城乡建设部.《"十三五"全国城镇生活垃圾无害化处理设施建设规划》(发改环资[2016] 2851号)[G/OL].2016-12-31. [2] DENG L W, LIU Y, ZHENG D, et al. Application and development of biogas technology for the treatment of waste in China[J]. Renewable & Sustainable Energy Reviews, 2017,70:845-851. [3] 王亚鑫. 基于成本效益视角的河南省生猪饲养规模选择研究[D].长春:吉林农业大学,2017. [4] 中华人民共和国住房和城乡建设部. 住房城乡建设部关于发布行业标准《餐厨垃圾处理技术规范》的公告第1560号. 2012.12. [5] 何意,李功达,张丽.武汉市餐厨垃圾产量预测研究[J]. 绿色科技, 2016(6):60-61. [6] 王攀,任连海,甘筱.城市餐厨垃圾产生现状调查及影响因素分析[J]. 环境科学与技术, 2013,36(3):181-185. [7] JANSSENS K, LAMBRECHTS W, VAN OSCH A. How consumer behavior in daily food provisioning affects food waste at household level in the Netherlands[J]. Foods, 2019,8(10):428. [8] DE CLERCQ D, WEN Z G, FEI F. Economic performance evaluation of bio-waste treatment technology at the facility level[J]. Resources Conservation and Recycling, 2017,116:178-184. [9] 袁瑞佳. 株洲市餐厨废弃物资源化利用项目评价研究[D]. 株洲:湖南工业大学,2015. [10] MOHAMMED A, ABDELHAK S, SAIDATULAKMAL M, et al. The impact of HPB on elderly diseases (Diabetes Mellitus, Hypertension, Hypercholesterolemia, Minor Stoke, Kidney Failure and Heart Problem):a.Logistic Analysis[J]. Ageing International, 2020, 45(5):149-180. [11] 潘俊杰,周捷.基于Logistic模型的消费者泳装购买意愿影响因素实证研究[J].西安工程大学学报,2020,34(4):19-25. [12] STEINLEY, DOUGLA S. Categorical data analysis with SAS and SPSS applications, categorical data analysis using the SAS system[J]. Journal of the American Statistical Association, 2006, 101(473):400-400. [13] TED Juhl. A nonparametric test of the predictive regression model[J]. Journal of Business & Economic Statistics, 2014,32:387-394. [14] 易平涛,李伟伟,郭亚军.线性无量纲化方法的结构稳定性分析[J]. 系统管理学报, 2014, 23(1):104-110. [15] LI Y Y, JIN Y Y, BORRION A, et al. Current status of food waste generation and management in China[J]. Bioresource Technology, 2019,273:654-665. [16] PAN A, YU L X, YANG Q. Characteristics and forecasting of municipal solid waste generation in China[J]. Sustainability,2019,11(5):1433. [17] 吁思颖.我国固体废物处理处置产业发展现状及趋势[J]. 清洗世界,2019,35(11):73-74. [18] 沙涛,迟子芳.餐厨垃圾处理设备的现状与发展趋势研究[J]. 环境科学与管理,2015,40(8):41-43. [19] CHEN T, SHEN D S, JIN Y Y, et al. Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model[J]. Applied Energy, 2017,208:666-677. [20] 侯恩科,冯栋,文强,等.矿井涌水水源识别的Logistic回归分析方法研究[J]. 矿业安全与环保,2019,46(6):77-83. [21] 彭建刚,屠海波,何婧,等.有序多分类logistic模型在违约概率测算中的应用[J]. 财经理论与实践,2009,30(4):2-7.
点击查看大图
计量
- 文章访问数: 196
- HTML全文浏览量: 17
- PDF下载量: 21
- 被引次数: 0