RESEARCH PROGRESS OF DRYING AND REDUCTION EQUIPMENT FOR HIGH-HUMIDITY AND HIGH-VISCOSITY SOLID WASTE
-
摘要: 高湿高黏固体废弃物产生量的日益增长,对生态环境造成了严重破坏,干化减量是使其得到资源化利用的关键一步,这是一个利用热能除去物料中水分的过程。由于高含水量、高黏度的特性,导致了易黏壁、难成形和干燥效率低等问题,对干燥设备的设计提出了更严格的要求。介绍了常见高湿高黏固体废弃物的种类和特点,分析了其干化减量的难点,综述了高湿高黏固体废弃物干燥机的研究进展。Abstract: The increasing quantity of high-humidity and high-viscosity solid wastes has caused serious damage to the ecological environment. Drying reduction is a key step for resource utilization. This is a process that uses heat energy to remove moisture from materials. Due to the characteristics of high water content and high viscosity, it has caused problems such as easily sticking to the wall, slowshaping and low drying efficiency, which puts forward more stringent requirements on the design of drying equipment. This article introduced the types and characteristics of common high-humidity and high-viscosity solid wastes, analyzed the difficulties in drying reduction, and reviewed the research progress of dryers for high-humidity and high-viscosity solid wastes.
-
Key words:
- high humidity and viscosity /
- solid waste /
- drying reduction
-
[1] 覃思宇,王丹丹.关于我国城镇污水处理厂污泥处理处置的现状分析[J].化工管理,2020(15):49-50. [2] 杨新海.污泥协同焚烧技术发展的探讨与行业思考[J].净水技术,2018,37(11):1-3, 39. [3] 张祥成,孟永彪.浅析中国粉煤灰的综合利用现状[J].无机盐工业,2020,52(2):1-5. [4] 严旦乐.工业固体废弃物与循环经济[J].绿色环保建材,2018(8):30, 32. [5] 张学飞,邢献军,糜梦星,等.厨余垃圾及其水热炭燃烧特性与动力学研究[J].太阳能学报,2020,41(6):128-135. [6] 杨刚. 高湿轻质废渣的烘干处理及工艺设备特点分析[R]. 建筑材料工业技术情报研究所,2010:49-52. [7] 闫业成,井传明,宋占龙,等.热风和微波干燥对煤泥品质的影响[J].化工进展,2019,38(增刊1):122-127. [8] 马学文. 城市污泥干燥特性及工艺研究[D].杭州:浙江大学,2008. [9] 罗丹,李紫龙,杜秋,等.赤泥综合利用研究进展[J].科技创新与应用,2020(15):75-76. [10] 字春光,苏友波,包立,等.我国磷石膏资源化利用现状及对策建议[J].安徽农业科学, 2018, 46(5):73-76, 80. [11] 张琪,华慧敏.玉米淀粉渣开发利用及研究进展[J].发酵科技通讯, 2014, 43(1):36-38, 46. [12] 江思瑶,宋昊,陈晨,等.白酒酒糟中有机酸的分离提取及香气成分分析[J].食品工业科技,2019,40(17):206-211. [13] 苑东东. 高粘高湿物料干燥机的结构设计与强度分析[D].石家庄:河北科技大学,2016. [14] 王伟云. 污泥间接薄层干燥与热压力耦合脱水干燥研究[D].大连:大连理工大学,2012. [15] 赵勇. 高效粘稠物料烘干机研究与开发[D].武汉:武汉理工大学,2014. [16] 任景春,刘东玲,李延国,等.直通热风顺流式双轴搅拌干燥机的研究[J].农机化研究,2010,32(7):124-126, 134. [17] 李宁,孙德松,于镇宇.旋转闪蒸干燥机的改进[J].食品与机械,2012,28(4):143-145, 148. [18] 裴中阳,梁毅.国外行星式混合机的最新动态观察与探讨[J].机电信息,2011(26):50-52. [19] ARASH IRANSHAHIA,CHRISTOPHE Devalsa,MOURAD Heniche,et al. Hydrodynamics characterization of the Maxblend impeller[J].Chemical Engineering Science,2007,(62):3641-3653. [20] GUNTZBURGER Y, FONTAINE, ANDRÉ, FRADETTE L, et al. An experimental method to evaluate global pumping in a mixing system:application to the Maxblend for Newtonian and non-Newtonian fluids[J]. Chemical Engineering Journal, 2013, 214(Complete):394-406. [21] FRADETTE L, THOMÉ G, TANGUY P A, et al. Power and Mixing Time Study Involving a Maxblend Impeller with Viscous Newtonian and Non-Newtonian Fluids[J]. Chemical Engineering Research & Design, 2007, 85(11):1514-1523. [22] YAO W, MISHIMA M, TAKAHASHI K. Numerical Investigation on Dispersive Mixing Characteristics of MAX-BLEND and Double Helical Ribbon[J]. Chemical Engineering Journal, 2001, 84(3):565-571. [23] 倪春林. 适合高湿高粘物料的干燥设备的研究与开发[D].天津:天津大学,2008. [24] 王敬哲. 气流-喷动床气固两相流动与干燥特性研究[D].大连:大连理工大学,2017. [25] ARRUDA E B, FACANHA J M F, PIRES L N, et al. Conventional and modified rotary dryer:comparison of performance in fertilizer drying[J]. Chemical Engineering and Processing, 2009, 48(9):1414-1418. [26] 张小卫. 褐煤流化床干燥器布风板的数值模拟与结构优化[D].东营:中国矿业大学,2015. [27] 王立,黄晓华,陈国三,等.新型黏性物料烘干机控制系统的设计[J].机械与电子,2015(12):10-13. [28] 李宇. 双层振动流化床的设计与特性分析[D].武汉:武汉轻工大学,2019. [29] 曾恩. 污泥防粘附与两级节能干燥系统研究[D].南昌:南昌航空大学,2018. [30] LANGRISH T A. Multi-scale mathematical modelling of spray dryers[J]. Journal of Food Engineering, 2009, 93(2):218-228. [31] WANNAPAKHE S, CHAIWONG T, DANDEE M, et al. Hot air dryer with closed-loop oscillating heat pipe with check valves for reducing energy in drying process[J]. Procedia Engineering,2012,32:77-82. [32] TAPANI JOKINIEMI,MIKKO HAUTALA,TIMO OKSANEN,et al. Parallel plate heat exchanger for heat energy recovery in a farm grain dryer[J]. Drying Technology,2016,34(5):547-556. [33] 方静雨. 污泥干燥机理试验研究[D].杭州:浙江大学,2011. [34] 薛玲丽. 污泥脱水及干燥研究[D].杭州:浙江大学,2012. [35] 张绪坤,王高敏,温祥东,等.基于图像处理的过热蒸汽与热风干燥污泥收缩特性分析[J].农业工程学报,2016,32(19):241-248. [36] 李潇. 苹果丁压差闪蒸联合干燥机理及质构形成影响机制研究[D].沈阳:沈阳农业大学,2020. [37] 陈少卿. 污泥在桨叶干燥机内干燥的模拟和试验研究[D].杭州:浙江大学,2018. [38] 周国顺. 褐煤的热干燥机理及实验研究[D].杭州:浙江大学,2017. [39] ORIKASA T, WU L, SHIINA T, et al. Drying characteristics of kiwifruit during hot air drying[J]. Journal of Food Engineering, 2008, 85(2):303-308. [40] OMOLOLA A O, JIDEANI A I O, KAPILA P F. Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(6):107-113. [41] OJEDIRAN J O, OKONKWO C E, ADEYI A, et al. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer:application of ANFIS in the prediction of drying kinetics[J]. Heliyon, 2020, 6(3):e03555. [42] GHANBARIAN D, DASTJERDI M B, Torkiharchegani M, et al. Mass transfer characteristics of bisporus mushroom (Agaricus bisporus) slices during convective hot air drying[J]. Heat and Mass Transfer, 2016, 52(5):1081-1088. [43] RENSBURG M J VAN,ROUX LE,Campbell, et al. Moisture transport during contact sorption drying of coal fines[J]. International Journal of Coal Preparation and Utilization,2020,40(4/5):281-296. [44] ALEXANDROS I, STEFANAKIS,VASSILIOS A,et al. Dewatering mechanisms in pilot-scale Sludge Drying Reed Beds:effect of design and operational parameters[J]. Chemical Engineering Journal, 2011, 172(1):430-44.
点击查看大图
计量
- 文章访问数: 126
- HTML全文浏览量: 4
- PDF下载量: 9
- 被引次数: 0