EFFECT OF CHELATING AGENT ON PTERIS VITTATA FOR REMEDIATION OF ARSENIC-CONTAMINATED SOIL
-
摘要: 用盆栽试验的方法,研究了3种可生物降解螯合剂谷氨酸二乙酸四钠(GLDA)、甲基甘氨酸二乙酸(MGDA)、乙二胺二琥珀酸(EDDS)和1种传统螯合剂乙二胺四乙酸(EDTA),在不同浓度(0,1.25,2.50,5.00,10.00 mmol/kg)下对蜈蚣草吸收土壤中As的影响。研究表明:4种螯合剂在1.25 mmol/kg时均能显著提高蜈蚣草生物量。EDDS在10 mmol/kg时根际土壤生物有效态As的含量最高,较空白组CK提高了69.2%。GLDA在10.00 mmol/kg时根际土壤As较原土壤降低了28.84%。浓度为5.00 mmol/kg的EDDS处理的蜈蚣草对As的富集系数BCF最高,为7.99,是CK的1.70倍。综合蜈蚣草生物量和对As的BCF值来看,5.00 mmol/kg MGDA地上部分对As积累量最大,其值为2648.65 μg/pot,较CK提高了65.92%。已被广泛应用于修复土壤Cd和Zn领域的新型螯合剂GLDA和MGDA在修复土壤As污染同样具有明显的潜力。Abstract: A pot test was conducted to study the effect of different chelating agents on absorption of As in soil by Pteris vittata, which included three biodegradable chelating agents, tetrasodium glutamate diacetate (GLDA), trisodium dicarboxymethylglycine (MGDA), ethylenediamine disuccinic acid (EDDS) and a traditional chelating agent, ethylenediaminetetraacetic acid (EDTA), with dosage ranged of 0~10 mmol/kg. It showed that all of the four chelating agents could significantly increase the biomass of Pteris vittata with the dosage of 1.25 mmol/kg. The bioavailable As content in rhizosphere soil was the highest when using 10 mmol/kg EDDS, which was 69.2% higher than CK. While As in the rhizosphere soil was 28.84% lower than that in the original soil, when the concentration of GLDA was 10.00 mmol/kg. The BCF of As was the highest (7.99), 1.7 times of that of CK, when treated with 5.00 mmol/kg EDDS. Accoding to Pteris vittata biomass and BCF of As, the accumulation of As of the above-ground part of the plant reached the maximum when treating with 5.00 mmol/kg MGDA, as high as 2648.65 μg/pot and 65.92% higher than CK group. Therefore, chelating agents GLDA and MGDA, which had been widely used in the field of soil remediation on Cd and Zn pollution, also had obvious potential for remediation on As contaminated soil.
-
Key words:
- Pteris vittata /
- chelator /
- soil remediation /
- As /
- plant enrichment
-
[1] 环境保护部,国土资源部.全国土壤污染状况调查公报[R]. 2014-04-17. [2] 纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016, 6(1):90-99. [3] 聂司宇.植物对重金属污染土壤修复的研究进展[J].安徽农学通报,2020,26(5):101-102. [4] LENA Q MA, KENNETH M KOMART, CONG TU, et al. A Fern that Hyperaccumulates Arsenic A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils[J]. World Environment, 2001, 409(6820):579. [5] CHEN T B,WEI C Y, HUANG Z C, et al. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 2002, 47(11):902-905. [6] 陈焱山,贾梦茹,曹越,等.蜈蚣草砷富集的分子机制研究进展[J].农业环境科学学报,2018,37(7):1402-1408. [7] S. M, RODRIGUES, et al. Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils[J]. Chemosphere, 2010,78(11):1301-1312. [8] G. DERMONT,M. BERGERON,G. MERCIER,M. RICHER-LAFLōCHE. Soil washing for metal removal:A review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials,2007,152(1):1-31. [9] 李晓宝, 董焕焕, 任丽霞, 等. 螯合剂修复重金属污染土壤联合技术研究进展[J]. 环境科学研究, 2019, 32(12):1993-2000. [10] 熊国焕,潘义宏,何艳明,等.螯合剂对大叶井口边草Pb、Cd、As吸收性影响研究[J].土壤,2012,44(2):282-289. [11] 卫泽斌,陈晓红,吴启堂,等.可生物降解螯合剂GLDA诱导东南景天修复重金属污染土壤的研究[J].环境科学,2015,36(5):1864-1869. [12] 贺玉龙,余江,谢世前,等.可生物降解螯合剂GLDA强化三叶草修复镉污染土壤[J/OL].环境科学:1-12[2020-01-06].https://doi.org/10.13227/j.hjkx.201907117. [13] 王雷,何闪英,李阿南,等.MGDA与DA-6强化黑麦草对Cd污染土壤的修复作用[J].水土保持学报,2016,30(3):134-140,146. [14] 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978. [15] WENZEL W W,KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. AnalyticaChimicaActa, 2001, 436(2):309-323. [16] 刘冠男,陈明,李悟庆,巩文雯.土壤中砷的形态及其连续提取方法研究进展[J].农业环境科学学报,2018,37(12):2629-2638. [17] STEVE P MCGRATH, ZHAO F J.Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology, 2003, 14(3):277-282. [18] 刘萍,翟崇治,余家燕,等.Cd、Pb复合污染下柠檬酸对龙葵修复效率及抗氧化酶的影响[J].环境工程学报,2012,6(4):1387-1392. [19] 杨树深,杨军,杨俊兴,等.土壤添加剂对蜈蚣草吸收转运铅、镉的影响[J].生态学杂志,2017,36(6):1650-1657. [20] 王小玲. 不同活化材料提高蜈蚣草富集重金属能力的效果研究[D].南宁:广西大学,2015. [21] 张灿灿, 多立安, 赵树兰. EDTA对高羊茅生长及其土壤中酶活性的影响[J]. 中国草地学报, 2013, 35(3):116-120. [22] 闻高志,邵帅,章浩,等.鼠李糖脂对蜈蚣草吸收富集Cd、Pb的影响[J].环境生态学,2019,1(6):86-90. [23] 韩永和. 根际土壤-微生物-蜈蚣草系统中砷的形态转化与解毒机制[D].南京:南京大学,2017. [24] 吴东墨,王宏镔,王海娟,等.吲哚乙酸和激动素配合施用对蜈蚣草土壤砷提取效率的影响[J].农业环境科学学报,2018,37(8):1705-1715. [25] LASAT M M.Phytoextraction of toxic metals:a review of biological mechanisms[J]. Journal of Environmental Quality, 2001, 31(1):109-120. [26] SUN Y B, ZHOU Q X, AN J, et al. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance)[J]. Geoderma, 2009, 150(1/2):106-112. [27] 韩廿,黄益宗,魏祥东,等.螯合剂对油葵修复镉砷复合污染土壤的影响[J].农业环境科学学报,2019,38(8):1891-1900. [28] KALYVAS G, TSITSELIS G, Gasparatos D,et al. Efficacy of EDTA and olive mill wastewater to enhance As, Pb, and Zn phytoextraction by Pteris vittata L. from a soil heavily polluted by mining activities[J] Sustainability, 2018,10(6):1-14. [29] ALKORTA I, HERNÁNDEZ-ALLICA J, BECERRIL J M,et al. Chelate-enhanced phytoremediation of soils polluted with heavy metals[J]. Reviews in Environmental Science and Biotechnology, 2004, 3(1):55-70. [30] 向冬芳,廖水姣,涂书新,等.三聚磷酸钠与柠檬酸复合强化蜈蚣草修复砷污染土壤[J].农业环境科学学报,2019,38(8):1973-1981. [31] 朱桓毅,杨爱江,胡霞,等.蜈蚣草对砷锑镉的富集效果及体内存在形态研究[J].广东农业科学,2019,46(6):68-78. [32] TU C, MA L Q. Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulatorPterisvittataL[J]. Plant and Soil, 2003, 249(2):373-382. [33] 刘金,殷宪强,孙慧敏,等.EDDS与EDTA强化苎麻修复镉铅污染土壤[J].农业环境科学学报,2015,34(7):1293-1300.
点击查看大图
计量
- 文章访问数: 177
- HTML全文浏览量: 20
- PDF下载量: 11
- 被引次数: 0