PASSIVATION EFFECT OF CALCIUM PHOSPHATE ON URANIUM IN SEDIMENTS IN DOWNSTREAM WATERS OF A URANIUM MINE
-
摘要: 利用Ca3(PO4)2对模拟铀污染土壤进行钝化处理,分析了Ca3(PO4)2投加量对其中有效态铀的钝化效果,基于此,采集粤北某铀矿下游水系沉积物,利用逐级化学提取法开展了Ca3(PO4)2固定前后铀赋存形态研究。结果表明:沉积物中铀主要赋存于铁锰氧化物结合态中,添加Ca3(PO4)2可降低沉积物中有效态铀的含量。溪流沉积物、池塘底泥、水稻田土壤中可交换态铀含量分别平均下降58.27%、58.04%、52.62%;碳酸盐结合态铀含量分别平均下降33.58%、47.98%、32.58%。Ca3(PO4)2的投加显著增加了活性较低形态以及活性最低的残渣态铀含量;溪流沉积物、池塘底泥、水稻田土壤中有机质结合态铀含量分别增高32.95%、46.86%、30.50%;残渣态铀含量分别增高252.67%、61.90%、98.96%。钝化前,原处于中等风险的池塘底泥、水稻田土壤降为低风险,原处于低风险的溪流沉积物中有效态铀含量占比下降1/3。Ca3(PO4)2能有效降低沉积物中铀的危害,可为放射性核素污染治理和环境修复提供一定参考。Abstract: Calcium phosphate was used to solidify the simulated uranium contaminated soil, and its passivation effect on the available uranium in the soil was analyzed. Based on this, the sediment in the downstream of a uranium mine in northern Guangdong was collected, and the occurrence forms of uranium before and after the passivation was carried out by sequential chemical extract method. The results showed that the uranium in the sediments mainly occured in Fe-Mn oxides combining species, and the content of available uranium in the sediments could be reduced by adding calcium phosphate. The exchangeable uranium content in stream sediments, pond sediment and paddy soil decreased by 58.27%, 58.04% and 52.62% respectively, and the carbonate bound uranium content decreased by 33.58%, 47.98% and 32.58% respectively. The content of organic combining species increased by 32.95%, 46.86% and 30.50% respectively in stream sediment, pond sediment and paddy soil, and the content of residual uranium increased by 252.67%, 61.90% and 98.96% respectively. The pond sediment and paddy soil with medium risk to the environment before passivation were reduced to low risk, and the proportion of available uranium in the stream sediment with low risk decreased by 1/3. In this study, the effect of calcium phosphate could effectively reduce the harm of uranium in sediment, which provided some reference for radionuclide pollution control and environmental remediation.
-
Key words:
- calcium phosphate /
- sediment /
- uranium /
- species /
- passivation
-
[1] 施宸皓,梁婕,曾光明,等. 某废弃铀矿周边农田土壤重金属和放射性元素的风险分析和修复措施[J]. 环境工程学报,2018,12(1):213-219. [2] 闫冬,何映雪,丁库克,等. 某铀矿周边常用蔬菜铀富集水平的调查分析[J].中国辐射卫生,2017,26(4):401-403. [3] 张彬,冯志刚,马强. 广东某铀废石堆周边土壤中铀污染特征及其环境有效性[J].生态环境学报,2015,24(1):156-162. [4] GODFRED O D, ASHANTHA G, GODWIN A A.Comparison of pollution indices for the assessment of heavy metals in Brisbane River sediment[J]. Environmental Pollution, 2016,219:1077-1091. [5] 邢维芹,张纯青,周冬,等. 磷酸盐、石灰和膨润土降低冶炼厂污染石灰性土壤重金属活性的研究[J]. 土壤通报, 2019, 50(5):1245-1252. [6] 邹雪艳,李小红,赵彦保,等. 化学钝化法修复重金属污染土壤研究进展[J]. 化学研究, 2018,29(6):560-569. [7] 谢广智,骆枫,林力,等.放射性污染土壤修复方法概述及评价[J]. 四川环境,2018,37(1):164-168. [8] SHTANGEEVA I. Uptake of uranium and thorium by native and cultivated plants[J]. Journal of Environmental Radioactivity, 2010,101:458-463. [9] 吴唯民,JACK C,DAVID W,等. 地下水铀污染的原位微生物还原与固定:在美国能源部田纳西橡树岭放射物污染现场的试验[J].环境科学学报,2011,31(3):449-459. [10] SHAHANDEH H, HOSNER L R. Enhancement of uranium phytoaccumulation from contaminated soils[J]. Soil Science, 2002,167:269-80. [11] KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu,Pb and Zn in soil using amendments:a review[J].Waste Management,2008,28:215-225. [12] SESHADRI B, BOLAN N S, CHOPPALA G, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere, 2017, 184:197-206. [13] 钟振宇,赵庆圆,陈灿,等.腐殖酸和含磷物质对模拟铅污染农田土壤的钝化效应[J].环境化学,2018,37(6):1327-1336. [14] CAO X D,MA L Q,RHUE D R,et al.Mechanisms of lead,copper,and zinc retention by phosphate rock[J].Environmental Pollution,2004,131(3):435-444. [15] AGENCY USEPA.Best Management Practices for Lead at Outdoor Shooting Ranges (EPA-902-B-01-001)[R].Washington,DC:USEPA,2001. [16] 陈世宝,朱永官. 不同含磷化合物对中国芥菜(Brassica oleracea)铅吸收特性的影响[J].环境科学学报,2004,24(4):707-712. [17] RAICEVIC S, KALUDJEROVIC R T,ZOUBOULIS A I. In situ stabilization of toxic metals in polluted soils using phosphates:theoretical prediction and experimental verification[J]. Journal of Hazardous Materials,2005,117(1):41-53. [18] CAO X D,MA L Q,RHUE D R,et al.Mechanisms of lead,copper and zinc retention by phosphate rock[J].Environmental Pollution,2004,131(3):435-444. [19] LIU R Q,ZHAO D Y. In situ immobilization of Cu(Ⅱ) in soils using a new class of iron phosphate[J]. Nanoparticles Chemosphere, 2007,68(10):1867-1876. [20] CHATURVEDIP K,SETH C S,MISR A V. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing[J].Journal of Hazardous Materials,2007,147(3):698-705. [21] BASTA N T,MCGOWEN S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J].Environment Pollution,2004,127(1):73-82. [22] LUSVARDI G, MALAVASI G, MENABUE L, et al.Removal of cadmium ion by means of synthetic hydroxyapatite[J]. Waste Management, 2002, 22(8):853-857. [23] ROUT S, KUMAR A, RAVI P M, et al. Understanding the solid phase chemical speciation of uranium in soil and effect of ageing[J]. Journal of Hazardous Materials, 2016,317:457-465. [24] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979,51:844-851. [25] 张平,齐剑英,杨春霞,等. 分级提取ICP-MS法考察黄铁矿中重金属的相态分布[J]. 光谱法与光谱分析,2007,27(2):1207-1209. [26] 苏峰丙,罗学刚,唐永金,等. 不同含磷化合物固化修复铀污染土壤的研究[J]. 核农学报,2018,32(2):407-415. [27] 唐振平,门倩,陈亮,等. 粤北某铀矿周边水体表层沉积物中铀与重金属元素赋存形态研究[J]. 铀矿冶,2019,38(4):237-243. [28] 张晓峰,陈迪云,彭燕,等.丁二酸改性茶油树木屑吸附铀的研究[J]. 环境科学, 2015,36(5):1686-1693. [29] 冯颖思,宋刚,祝秋萍,等.某铀矿下游水系沉积物剖面的放射性核素分布特征[J].中国环境科学, 2013,33(8):1442-1446. [30] 环境保护部. 土壤有机碳的测定重铬酸钾氧化-分光光度法:HJ 615-2011[S]. 北京:中国环境科学出版社出版,2011. [31] 王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报2005,8(24):728-734. [32] NZIHOU A S. Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites[J]. Waste and Biomass Valorization, 2010:163-174. [33] 宁东峰. 土壤重金属原位钝化修复技术研究进展[J]. 中国农学通报, 2016,32(23):71-80. [34] 张晶,胡宝群,冯继光. 某铀矿尾矿坝周边水土的重金属迁移规律研究[J]. 能源研究与管理,2011(1):27-29. [35] 宋刚,冯颖思,王津,等. 某铀尾矿下游水体及表层沉积物中铀污染特征[J]. 环境科学与技术2013,9(36):159-162. [36] 董丽华,李亚男,常素云,等. 沉积物中重金属的形态分析及风险评价[J]. 天津大学学报,2009,12(42):1112-1117. [37] KUNWAR P S, DINESH M, VINOD K S,et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India[J]. Journal of Hydrology,2005(312):14-27. [38] PRANAV K C, CHANDRA S S, VIRENDRA M. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing[J]. Journal of Hazardous Materials, 2007,147(3):698-705. [39] COTTER-HOWELLS J D, CHAMPNESS P E, Charnock J M, et al. Identification of pyromorphite in mine-waste contaminated soils by ATEM and EXAS[J]. European Journal of Soil Science,1994,45(4):393-402. [40] BASTA N T, MCGOWEN S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J]. Environmental Earth Sciences,2004,127(1):73-82. [41] SUZUKI Y, SUKO T. Geomicrobiological factors that control uranium mobility in the environment:update on recent advances in the bioremediation of uranium-contaminated sites[J]. Journal of Mineralogical and Petrological Sciences, 2006,101:299-307. [42] MEHTA V S, MAILLOT F, WANG Z, et al.Effect of co-solutes on the products and solubility of uranium(Ⅵ) precipitated with phosphate[J].Chemical Geology, 2014,364:66-75. [43] 丁淑芳,谢正苗,吴卫红,等. 含磷物质原位化学钝化重金属污染土壤的研究进展[J].安徽农业科学,2012,40(35):17093-17097.
点击查看大图
计量
- 文章访问数: 359
- HTML全文浏览量: 36
- PDF下载量: 34
- 被引次数: 0