中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共存Zn(Ⅱ)抑制Pannonibacter phragmitetus BB还原Cr(Ⅵ)的分子机理

唐佳琪 杨卫春 杨志辉 廖骐

唐佳琪, 杨卫春, 杨志辉, 廖骐. 共存Zn(Ⅱ)抑制Pannonibacter phragmitetus BB还原Cr(Ⅵ)的分子机理[J]. 环境工程, 2021, 39(4): 36-41. doi: 10.13205/j.hjgc.202104007
引用本文: 唐佳琪, 杨卫春, 杨志辉, 廖骐. 共存Zn(Ⅱ)抑制Pannonibacter phragmitetus BB还原Cr(Ⅵ)的分子机理[J]. 环境工程, 2021, 39(4): 36-41. doi: 10.13205/j.hjgc.202104007
TANG Jia-qi, YANG Wei-chun, YANG Zhi-hui, LIAO Qi. MOLECULAR MECHANISM OF Cr(Ⅵ) REDUCTION INHIBITION BY PANNONIBACTER PHRAGMITETUS BB WITH CO-EXISTING Zn(Ⅱ)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 36-41. doi: 10.13205/j.hjgc.202104007
Citation: TANG Jia-qi, YANG Wei-chun, YANG Zhi-hui, LIAO Qi. MOLECULAR MECHANISM OF Cr(Ⅵ) REDUCTION INHIBITION BY PANNONIBACTER PHRAGMITETUS BB WITH CO-EXISTING Zn(Ⅱ)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 36-41. doi: 10.13205/j.hjgc.202104007

共存Zn(Ⅱ)抑制Pannonibacter phragmitetus BB还原Cr(Ⅵ)的分子机理

doi: 10.13205/j.hjgc.202104007
基金项目: 

国家重点研发项目"多污染物协同修复材料研发及长效安全适用性评估"(2018YFC1802204)。

详细信息
    作者简介:

    唐佳琪(1995-),女,硕士研究生,主要研究方向为Cr (Ⅵ)污染微生物治理技术。1316085669@qq.com

    通讯作者:

    廖骐(1979-),男,博士,副教授,主要研究方向为重金属污染场地微生物生态及修复技术。liaoqi@csu.edu.cn

MOLECULAR MECHANISM OF Cr(Ⅵ) REDUCTION INHIBITION BY PANNONIBACTER PHRAGMITETUS BB WITH CO-EXISTING Zn(Ⅱ)

  • 摘要: 通过电子传递体系活性、酶活性以及实时定量PCR技术,揭示共存Zn(Ⅱ)延迟Pannonibacter phragmitetus BB(BB)生长,抑制Cr(Ⅵ)还原的分子机理。结果表明:共存Zn(Ⅱ)抑制BB菌还原Cr(Ⅵ)主要表现为胞内和胞外抑制,共存Zn(Ⅱ)通过降低电子传递体系活性和细胞色素c氧化酶活性,抑制其胞外Cr(Ⅵ)还原;共存Zn(Ⅱ)通过降低铬转运效率的方式,抑制其胞内Cr(Ⅵ)还原。SOD、CAT、POD、GST 4种抗氧化酶活性的研究表明:共存Zn(Ⅱ)引起的胞内氧化压力较小,对BB菌造成的毒性较低,从侧面印证了共存Zn(Ⅱ)对BB菌生长的延迟作用。
  • [1] 汤文帅,方雨虹,陈涛,等. 电镀废水原位制备Ni(Zn)Cr混合氧化物/磁性石墨烯复合材料及其电催化性能研究[J]. 电镀与涂饰, 2019, 38(13):689-696.
    [2] GHORPADE A, AHAMMED M M. Water treatment sludge for removal of heavy metals from electroplating wastewater[J]. Environmental Engineering Research, 2017, 23(1):92-98.
    [3] KUMAR V, DWIVEDI S K. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater[J]. Ecotoxicology and Environmental Safety, 2019, 185:109734.
    [4] TAN H, WANG C, ZENG G Q, et al. Bioreduction and biosorption of Cr(Ⅵ) by a novel Bacillus sp. CRB-B1 strain[J]. Journal of Hazardous Materials, 2020, 386:121628.
    [5] KUMAR V, DWIVEDI S K. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater[J]. Chemosphere, 2019, 237:124567.
    [6] MA L L, XU J M, CHEN N, et al. Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium[J]. Ecotoxicology and Environmental Safety, 2019, 170:763-770.
    [7] BANERJEE S, MISRA A, CHAUDHURY S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. Journal of Hazardous Materials, 2019, 367:215-223.
    [8] ELANGOVAN R, PHILIP L, CHANDRARAJ K. Hexavalent chromium reduction by free and immobilized cell free extract of Arthrobacter rhombi-RE[J]. Applied Biochemistry and Biotechnology, 2010, 160(1):81-97.
    [9] BAI Y N, LU Y Z, SHEN N, et al. Investigation of Cr(Ⅵ) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition[J]. Journal of Hazardous Materials, 2018, 344:585-592.
    [10] GE S M, SHI C G. Simultaneous Cr(Ⅵ) reduction and Zn(Ⅱ) biosorption by Stenotrophomonas sp. and constitutive expression of related genes[J]. Biotechnology Letters, 2016, 38(5):877-884.
    [11] 魏蓝. 土壤微生物对六价铬的还原及稳定化效果研究[D]. 苏州:苏州科技大学, 2017.
    [12] WAN R, CHEN Y G, ZHENG X, et al. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption[J]. Environmental Science Technology, 2016, 50(18):9915-9922.
    [13] 朱文杰. Leucobacter sp.CRB1菌还原铬(Ⅵ)的机理及其在铬渣解毒中的应用[D]. 长沙:中南大学, 2008.
    [14] ZHAO S Y, SU X X, WANG Y Y, et al. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission[J]. Chemosphere, 2020, 245:125394.
    [15] VITI C, MARCHI E, DECOROSI F, et al. Molecular mechanisms of Cr(Ⅵ) resistance in bacteria and fungi[J]. FEMS Microbiology Reviews, 2014, 38(4):633-659.
    [16] CHAI L Y, DING C L, LI J W, et al. Multi-omics response of Pannonibacter phragmitetus BB to hexavalent chromium[J]. Environmental Pollution, 2019, 249:63-73.
    [17] THATOI H, DAS S, MISHRA J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium:a review[J]. Journal of Environmental Management, 2014, 146:383-399.
    [18] KANNT A, OSTERMANN T, MULLER H, et al. Zn2+ binding to the cytoplasmic side of Paracoccus denitrificans cytochrome c oxidase selectively uncouples electron transfer and proton translocation[J]. FEBS Letters, 2001, 503(2/3):142-146.
    [19] KAPPLER U, DAVENPORT K, BEATSON S, et al. Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093(T))[J]. Standards in Genomic Sciences, 2012, 7(1):44-58.
    [20] 韩倩. 亚硝酸还原酶产生菌的筛选、发酵优化以及酶学性质研究[D]. 广州:华南理工大学, 2015.
    [21] HUO Y Y, CHENG H, HAN X F, et al. Complete Genome Sequence of Pelagibacterium halotolerans B2(T)[J]. Journal of Bacteriology, 2012, 194(1):197-198.
    [22] XI J, SHENG X F, HE L Y. Draft Genome Sequence of Rhizobium sp. H41, a Rock-Weathering Bacterium from a Weathered Rock Surface[J]. Microbiology Resource Announcements, 2014, 2(6):e01127-14.
    [23] CHAI L Y, DING C L, TANG C J, et al. Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB:from genome to gene and protein[J]. Ecotoxicology and Environmental Safety, 2018, 162:139-146.
    [24] 周思敏,董兰岚,何元,等. ChrA基因在大肠杆菌中的表达及其抗铬特性[J]. 南方医科大学学报, 2017, 37(10):1290-1295.
    [25] XU X J, XIA L, CHEN W L, et al. Detoxification of hexavalent chromate by growing Paecilomyces lilacinus XLA[J]. Environmental Pollution, 2017, 225:47-54.
    [26] KHAN S, LV J, IQBAL A, et al. Morphophysiological and transcriptome analysis reveals a multiline defense system enabling cyanobacterium Leptolyngbya strain JSC-1 to withstand iron induced oxidative stress[J]. Chemosphere, 2018, 200:93-105.
    [27] SATAPUTE P, PAIDI M K, KURJOGI M, et al. Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis[J]. Environmental Pollution, 2019, 251:555-563.
  • 加载中
计量
  • 文章访问数:  372
  • HTML全文浏览量:  45
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回