中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型城市轻型汽油车尾气排放模式分析

殷子渊 张凯山

殷子渊, 张凯山. 典型城市轻型汽油车尾气排放模式分析[J]. 环境工程, 2021, 39(4): 64-71. doi: 10.13205/j.hjgc.202104011
引用本文: 殷子渊, 张凯山. 典型城市轻型汽油车尾气排放模式分析[J]. 环境工程, 2021, 39(4): 64-71. doi: 10.13205/j.hjgc.202104011
YIN Zi-yuan, ZHANG Kai-shan. MODEL ANALYSIS FOR EMISSIONS OF LIGHT-DUTY GASOLINE VEHICLES IN A TYPICAL CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 64-71. doi: 10.13205/j.hjgc.202104011
Citation: YIN Zi-yuan, ZHANG Kai-shan. MODEL ANALYSIS FOR EMISSIONS OF LIGHT-DUTY GASOLINE VEHICLES IN A TYPICAL CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 64-71. doi: 10.13205/j.hjgc.202104011

典型城市轻型汽油车尾气排放模式分析

doi: 10.13205/j.hjgc.202104011
基金项目: 

国家自然科学基金项目"轻型机动车尾气排放劣化率模型构建及应用研究"(41877395)。

详细信息
    作者简介:

    殷子渊(1996-),女,硕士,主要研究方向为大气污染控制。913661814@qq.com

    通讯作者:

    张凯山(1974-),男,博士,教授,主要研究方向为空气质量模拟与环境数据分析。kaishanzhang@yahoo.com

MODEL ANALYSIS FOR EMISSIONS OF LIGHT-DUTY GASOLINE VEHICLES IN A TYPICAL CITY

  • 摘要: 为建立典型城市机动车驾驶模式并量化其尾气排放,研究选取成都市内26辆满足国Ⅴ排放标准(GB 18352.5-2013《轻型汽车污染物排放限值及测量方法(中国第五阶段)》)的轻型汽油车,利用便携式尾气测量系统测量其现实条件下的行驶工况及尾气排放,并根据实际情况结合分类回归树方法构建本地化的驾驶模式并分析各模式的尾气排放。结果表明:划分的加速、减速、匀速、怠速、停走5种驾驶模式,可以反映车辆行驶过程中尾气排放和油耗特征。不同驾驶模式间的尾气排放有显著差异。通常情况下,以加速最大,其次为匀速、停走、减速,以怠速最小。根据污染物不同,不同模式间的尾气排放差异可达到12倍。此外,现实条件下车辆尾气超标排放的情况严重,且存在间歇性高排放的现象。这说明构建典型城市驾驶模式并分析其模式排放特征有助于估算小尺度的机动车尾气排放清单,并为交通管理和尾气排放控制提供数据参考。
  • [1] 中华人民共和国生态环境部.中国移动源环境管理年报2019[R].北京:中华人民共和国生态环境部, 2019.8.
    [2] 张凯山,宋宁,第宝锋. 谈建立城市特征驾驶工况的必要性[C]//四川省环境科学学会二〇一一年学术年会论文集,2011.287-293.
    [3] USEPA. User's Guide to MOBILE6.1 and MOBILE6.2:Mobile Source Emission Factor Model[R]. EPA420-R-03-010, 2003.
    [4] California Air Resource Board. EMFAC User's Guide[M]. U.S.California:California Air Resource Board, 2002. 20-36.
    [5] NTZIACHRISTOS L, SAMARAS Z, et al. COPERT Ⅲ Computer program to calculate emissions from road transport, Methodology and emission factors (Version 2.1)[R]. Copenhagen:European Environmental Agency, 2000.
    [6] 张兰怡,胡喜生,邱荣祖. 机动车尾气污染物排放模型研究综述[J]. 世界科技研究与发展, 2017,39(4):355-362.
    [7] 陈琳,张凯山,张健,等. 城市特征驾驶工况建立及结果比较研究[J]. 环境科学与技术, 2014, 37(1):148-154.
    [8] WANG A J, GE Y S, TAN J W, et al. On-road pollutant emission and fuel consumption characteristics of buses in Beijing[J]. Journal of Environmental Sciences,2011, 23(3):419-426.
    [9] USEPA. User Guide for Motor Vehicle Emission Simulator MOVES2010(EPA-420-B-09-041)[R]. Washington D.C.:U.S. Environmental Protection Agency, 2012.
    [10] JIMENEZ-PALACIOS J L. Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing[D]. Cambridge:Massachusetts Institute of Technology, 1999. 54-56.
    [11] FREY H C, ROUPHAIL N M, UNAL A, et al. Emissions reduction through better traffic management:an empirical evaluation based upon on-road measurements[C]//North Carolina Department of Transportation. North Carolina:North Carolina State University, 2001.
    [12] UNAL A, FREY H C, ROUPHAIL N M. Quantification of highway vehicle emissions hot spots based upon on-board measurements[J]. Journal of the Air & Waste Management Association (1995), 2004, 54(2):130-140.
    [13] BECKWITH M, BATES E, GILLAH A, et al. NO2 hotspots:are we measuring in the right places?[J]. Atmospheric Environment:X, 2019, 2:100025.
    [14] LEWIS R J. An introduction to classification and regression tree (CART) analysis[A]. In:the 2000 Annual Meeting of the Society for Academic Emergency Medicine. California:Harbor-UCLA Medical Center, 2000.
    [15] LI Z, ZHANG K S, PANG K L, et al. A fuel-based approach for emission factor development for highway paving construction equipment in China[J]. Journal of the Air & Waste Management Association, 2016, 66(12):1214-1223.
    [16] ODURO S D, HA Q P, DUC H. Vehicular emissions prediction with CART-BMARS hybrid models[J]. Transportation Research Part D:Transport and Environment, 2016, 49:188-202.
    [17] AMIN T, BRYAN C P. Modeling multiple land use changes using ANN, CART and MARS:comparing tradeoffs in goodness of fit and explanatory power of data mining tools[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 28:102-116.
    [18] ZHANG S C. Cost-sensitive KNN classification[J]. Neurocomputing, 2020, 391:234-242.
    [19] DAS L, SIVARAM A, VENKATASUBRAMAANIAN V. Hidden representations in deep neural networks:Part 2. Regression problems[J]. Computers & Chemical Engineering, 2020, 139:106895.
    [20] XU X D, ABDUL A H M, GUENSLER R. A modal-based approach for estimating electric vehicle energy consumption in transportation networks[J]. Transportation Research Part D:Transport and Environment, 2019, 75:249-264.
    [21] CHEN L F, LIANG Z R, ZHANG X, et al. Characterizing particulate matter emissions from GDI and PFI vehicles under transient and cold start conditions[J]. Fuel, 2017, 189:131-140.
    [22] YU S, DONG G,LI L. Transient characteristics of emissions during engine start/stop operation employing a conventional gasoline engine for HEV application[J]. International Journal of Automotive Technology, 2008, 9:543-549.
    [23] YANG W D, ZHANG Q Y, WANG J L, et al, Emission characteristics and ozone formation potentials of VOCs from gasoline passenger cars at different driving modes[J]. Atmospheric Pollution Research, 2018, 9(5):804-813.
    [24] WANG Y C, HAO C X, GE Y S, et al. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests[J]. Fuel, 2020, 278:118340.
    [25] 钱芳. CNG/汽油双燃料出租车排放特性研究[D].南京:东南大学,2015.
    [26] CHONG H S, PARK Y, KWON S, et al. Analysis of real driving gaseous emissions from light-duty diesel vehicles[J]. Transportation Research Part D:Transport and Environment, 2018, 65:485-499.
    [27] 李加强,葛蕴珊,何超,等.发动机工况与行驶挡位对轻型汽油车道路排放的影响[J].环境工程,2018,36(12):130-134

    ,154.
    [28] HE L Q, HU J N, YANG L H, et al. Real-world gaseous emissions of high-mileage taxi fleets in China[J]. Science of the Total Environment,2019,659:267-274.
    [29] 付秉正,杨正军,尹航,等.轻型汽油车实际行驶污染物排放特性的研究[J].汽车工程,2017,39(4):376-380.
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  17
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回