中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

餐厨垃圾营养复配及其在复合微生物菌剂作用下的好氧降解

赵紫萱 邱卫华 王攀

颉亚玮, 徐冉云, 丁伟, 蒋毅恒, 张奔, 刘宏远. 含氯离子苯酚废水高级氧化过程AOX生成研究[J]. 环境工程, 2022, 40(5): 1-8. doi: 10.13205/j.hjgc.202205001
引用本文: 赵紫萱, 邱卫华, 王攀. 餐厨垃圾营养复配及其在复合微生物菌剂作用下的好氧降解[J]. 环境工程, 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015
JIE Ya-wei, XU Ran-yun, DING Wei, JIANG Yi-heng, ZHANG Ben, LIU Hong-yuan. AOX FORMATION DURING THE ADVANCED OXIDATION OF PHENOL WASTEWATER CONTAINING CHLORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 1-8. doi: 10.13205/j.hjgc.202205001
Citation: ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015

餐厨垃圾营养复配及其在复合微生物菌剂作用下的好氧降解

doi: 10.13205/j.hjgc.202104015
基金项目: 

中国科学院洁净能源研究院合作基金项目(DNL180305);北京市自然基金面上项目(8202010)。

详细信息
    作者简介:

    赵紫萱(1998-),女,本科生。2214043358@qq.com

    通讯作者:

    邱卫华(1978-),女,博士,副研究员,主要研究方向为生物质资源与利用。whqiu@ipe.ac.cn

    王攀(1983-),女,博士,副教授,主要研究方向为固体废弃物资源化利用。wangpan@th.btbu.edu.cn

THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA

  • 摘要: 针对餐厨垃圾自身特点,选用花生壳、香蕉皮对餐厨垃圾进行复配以改善其营养结构,并通过微生物强化其好氧降解。对餐厨垃圾降解菌剂CCJ-Bac-1进行多样性分析及鉴定发现,该菌剂以芽孢杆菌(Bacillus spp.)为主,主要包括贝莱斯芽孢杆菌(B.velezensis)、栗褐芽孢杆菌(B.badius)、热噬淀粉芽孢杆菌(B.thermoamylovorans)、普鲁兰类芽孢杆菌(Paenibacillus pueri)、格氏乳杆菌(Lactobacillus gasseri)、食蔗糖驹形氏杆菌(Komagataeibacter saccharivorans),其中栗褐芽胞杆菌、热噬淀粉芽孢杆菌和普鲁兰类芽孢杆菌均为首次在餐厨垃圾降解中报道。以花生壳和香蕉皮对餐厨垃圾原料进行理化性质调控,确定出最适的复配比为餐厨垃圾(湿料):花生壳(干料):香蕉皮(干料)=0.7:0.2:0.1。此复配原料经CCJ-Bac-1与嗜热毁丝霉、嗜热链球菌按照1:1:1复合制备的菌剂降解后,减重率达到63.9%。该成果可为餐厨垃圾制作可生物转化的原料提供基础数据。
  • [1] WANG X M, CHEN J L, GU M, et al. Status quo, problems and countermeasures faced by china's food waste management under the background of "Zero Waste City" construction[J]. Environmental Sanitation Engineering, 2019, 27:1-10.
    [2] JIA X, WANG Y, REN L H, et al. Impact of hydrothermal pre-treatmentfrom typical kitchen waste in Beijing on biohydrogen production potential[J]. Chinese Journal of Environmental Engineering, 2017, 11:6034-6040.
    [3] ZHENG X, CHEN Z B, XIA T Y, et al. Screening and identification of aerobic degradation bacteria in kitchen waste[J]. Southwest China Journal of Agricultural Sciences, 2016, 29:420-424.
    [4] HUANG X Y, ZHANG J T, WANG F, et al. Research progress in resource utilization of kitchen waste and its process pollution control[J]. Chemical Industry and Engineering Progress, 2016, 35:2945-2951.
    [5] HAFID H S, RAHMAN N A A, SHAH U K M, et al. Feasibility of using kitchen waste as future substrate for bioethanol production:a review[J]. Renewable and Sustainable Energy Reviews, 2017, 74:671-686.
    [6] JIANG Y, JU M T, LI W Z, et al. Analysis of the key issues on market promotion and application of food waste composting[J]. Ecological Economy, 2017, 33:96-102.
    [7] HAO X, SU J, SUN Y Y, et al. Biogas production performance of anaerobic co-digestion with different ratios of kitchen waste, sewage sludge and rice straw[J]. Research of Environmental Sciences, 2020, 33:235-242.
    [8] WANG X J, WEN W X, PAN S Q, et al. Influence of conditioner proportion on aerobic composting of food waste and microbial characteristics[J]. Chinese Journal of Environmental Engineering, 2016, 10:3215-3222.
    [9] DUAN S J, JIN H, MAO G H, et al. Pilot-scale experiment of new composite bacterial species to dispose restaurant garbage[J]. Chinese Journal of Environmental Engineering, 2017, 11:1123-1130.
    [10] HAO J W, HE Z H, ZHOU C F, et al. Screening and application of fungi on hydrolysis of high-concentrated protein food waste[J]. Chinese Journal of Environmental Engineering, 2018, 12:286-293.
    [11] WANG G H, LIU H B, ZHENG Z Y, et al. Promoted sludge anaerobic digestion by the hydrolase produced from food waste fermentation with Aspergillus oryzae[J]. Chinese Journal of Environmental Engineering, 2019, 13:1175-1185.
    [12] HUANG Q, LI G S, ZHANG L. A method for preparing compound fungus used for pretreatment of kitchen waste and application thereof:200810223029.0[P]. 2010-07-14.
    [13] TAMAKI H, WRIGHT C L, LI X Z, et al. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform[J]. PLoS One, 2011, 6:e25263.
    [14] MAGO AČG1 T, SALZBERG S L. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27:2957-2963.
    [15] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7:335-336.
    [16] ROGNES T, FLOURI T, NICHOLS B, et al. VSEARCH:a versatile open source tool for metagenomics[J]. PeerJ 2016:4:e2584.
    [17] HAAS B J, GEVERS D, MEARL A, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21:494-504.
    [18] EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013, 10:996-998.
    [19] CHRISTIAN Q, ELMAR P, PELIN Y, et al. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41:590-596.
    [20] National Renewable Energy Laboratory (NREL). Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure (LAP).[2012-08-03]. http://www.nrel.gov/biomass/analytical_procedures.html, 2012.
    [21] MA D. Kjeldahl determination of protein content[J]. Metrology & Measurement Technique, 2008, 35:57-58.
    [22] Ministry of agriculture of the People's Republic of China. Soil testing, Part 6:Determination of soil organic matter:NY/T 1121.3-2006[S]. Beijing, 2006.
    [23] LI D. Application and improvement of phenol-sulfuric acid method for measuring total sugar in food[J]. Chinese Journal of Health Laboratory Technology, 2003, 13:506-506.
    [24] National food and drug administration of the People's Republic of China, National health and family planning commission. National food safety standard:GB/T 5009.9-2016[S]. Beijing, 2016.
    [25] 国家食品药品监督管理总局,国家卫生与计划生育委员会. 食品安全国家标准食品中淀粉的测定[S]. 北京.
    [26] SU H, QIU W H, KONG Q, et al. Thermostable pectate lyase from Caldicellulosiruptor kronotskyensis provides an efficient addition for plant biomass deconstruction[J]. Journal of Molecular Catalysis B:Enzymatic, 2015, 121:104-112.
    [27] YU P B, DU J, CHEN J X. Study on screening and identification of Bacillus in the process of high-temperature aerobic composting and its relative application[J]. Food and Fermentation Industries, 2020:10.13995/j.cnki.11-1802/ts.022652.
    [28] QIAO C S, LI D, YANG P P, et al. Screening of aerobic strains for biological treatment of kitchen waste[J]. Environmental Science & Technology, 2012, 35:122-125.
    [29] GUO X Y, WANG P, REN L H, et al. Optimization of culture conditions for Bacillus mucilaginosus growing in food waste-recycling wastewater[J]. Research of Environmental Sciences, 2017, 3:464-470.
    [30] TAN Z W, GAO C, ZHANG Y F, et al. Identifcation of Bacillus methylotrophicus and its application in preventing fly maggot production in the environment[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24:631-635.
    [31] ZOU D X. Research on aerobic composting technology of kitchen waste with spend mushroom substrate as amendments and its mechanism[D]. Harbin:Harbin Institute of Technology, 2010.
    [32] QIAO C S, SONG K, ZHANG J K, et al. Screening and identification of strains in situ kitchen waste treatment[J]. Modern Food Science and Technology, 2013, 29:756-761.
    [33] CAI G L, ZHANG F, OUYANG Y X, et al. Research progress on Bacillus velezensis[J]. Northern Horticulture, 2018, 12:162-167.
    [34] ZHANG C W, CHENG K, ZHANG X, et al. Taxonomy and functions of Bacillus velezensis:a review[J]. Food and Fermentation Industries, 2019, 45:258-265.
    [35] MIAO F R, DONG Z Y, CHEN X Z, et al. Isolation and Identification of Bacillus thermoamylovorans[J]. Fujian Journal of Agricultural Sciences, 2018, 33:413-417.
    [36] CHIHAYA Y, KOTA S, NORIYASU I, et al. Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501[J]. The Journal of General and Applied Microbiology, 2016, 62:313-319.
    [37] WANG H S. Study on the treatment of nitrate in groundwater by banana peel as external canbon source[D]. Beijing:China University of Geosciences, 2019.
    [38] DENG X, ZHOU H, CHEN S, et al. Adsorption of Cd2+ from aqueous solution by modified corn straw biochar and peanut shell biochar[J]. Chinese Journal of Environmental Engineering, 2016, 10:6325-6331.
    [39] AKPOMIE K G, CONRADIE J. Banana peel as a biosorbent for the decontamination of water pollutants:a review[J]. Environmental Chemistry Letters 2020, https://doi.org/10.1007/s10311-020-00995-x.
    [40] DONG W Z, HAN S Y, XU J, et al. Research status and application prospect of peanut shell[J]. Chinese Agricultural Science Bulletin, 2019, 35:14-19.
    [41] ZHANG W X, GAO A P, ZHOU J Y, et al. Screening and identification of Bacillus badius in oil-containing wastewater[J]. Chinese Journal of Microecology, 2007, 5:424-425.
    [42] MAGORZATA W, PIOTR N. Simultaneous removal of lead(Ⅱ) ions and poly(acrylic acid) macromolecules from liquid phase using of biocarbons obtained from corncob and peanut shell precursors[J]. Journal of Molecular Liquids, 2019, 296:111806.
    [43] GAO X H, LIU Z M, TENG H H, et al. Adsorption-remove effect of p-nitrophenol in water by peanut shell biochar at different pyrolysis temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35:224-230.
    [44] LV C, YUAN H R, WANG K S, et al. Anaerobic digestion performances of fruit and vegetable waste and kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27:91-95.
  • 期刊类型引用(28)

    1. 吴姬,王婧,符式锦. 海口市城乡环境梯度带土壤重金属富集特征. 热带作物学报. 2025(02): 503-513 . 百度学术
    2. 邵璐,刘洪,欧阳渊,张景华,高文龙,刘小念,宋雯洁,吴君毅,苏悦. 三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价. 西北地质. 2025(01): 204-218 . 百度学术
    3. 陈佳,范萍萍,龙文涛,邰良. 土壤侵蚀对重金属迁移的作用规律与机制研究进展. 水土保持研究. 2024(01): 460-470 . 百度学术
    4. 占楠彪,谷端银,李婷,崔秀敏,娄燕宏,诸葛玉平. 中轻度重金属污染农田土壤的时空特征及改良. 农业环境科学学报. 2024(02): 294-307 . 百度学术
    5. 葛磊,方凤满,周浩,姚有如,谭华荣,王飞,林跃胜. 菜子湖湿地不同类型土壤重金属的垂直分布特征及迁移规律. 环境化学. 2024(03): 933-941 . 百度学术
    6. 闫金霞,杨家哲,杜正浩. 垃圾堆放场土壤重金属分布特征及污染评价. 山东化工. 2024(05): 231-236 . 百度学术
    7. 张锦明,张建泽,王洲瑜,汪世轩,赵东阳,阿不都艾尼·阿不里. 基于PMF模型的吉木萨尔县土壤重金属空间分布特征与来源解析. 新疆大学学报(自然科学版)(中英文). 2024(03): 354-363+374 . 百度学术
    8. 贾少宁,申发,颜宁,王若菲,刘苏慧,于洋,栗云召,杨继松,于君宝. 黄河三角洲不同土地利用方式下土壤重金属分析评价. 鲁东大学学报(自然科学版). 2023(03): 193-202 . 百度学术
    9. 丰土根,郑柳钦,张箭,韦扬. 重金属-有机物复合污染土风险评价新方法. 环境工程. 2023(07): 222-228 . 本站查看
    10. 高梦绯,郑顺安,刘昌华,郜允兵,高戈,赵亚楠. 基于多因素融合的耕地土壤重金属污染风险评价. 环境工程. 2023(08): 233-241 . 本站查看
    11. 阮彦楠,吕本春,王志远,王应学,王伟,陈检锋,尹梅,陈华,付利波. 云南某区典型农田土壤重金属污染和潜在生态风险评价. 安徽农业科学. 2023(21): 65-72 . 百度学术
    12. 陈海英,虎啸,覃昆,魏腾川,白薇. 巴中市巴州区水田与旱地土壤重金属富集与垂直分布特征. 四川农业科技. 2023(12): 56-59 . 百度学术
    13. 陈敏毅,宋清梅,叶权运,游学睿,吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征. 生态环境学报. 2023(12): 2228-2235 . 百度学术
    14. 黄钟霆,易盛炜,陈贝贝,彭锐,石雪芳,李峰. 典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价. 环境科学. 2022(02): 975-984 . 百度学术
    15. 毛盼,王明娅,孙昂,陈纯,冯茜茜,韩桥,王明仕. 某典型废弃硫酸场地土壤重金属污染特征与评价. 环境化学. 2022(02): 511-525 . 百度学术
    16. 丰土根,郑柳钦,张箭,张福海,宋健. 废弃农药厂重金属污染土风险评价及焙烧修复效果研究. 环境工程. 2022(02): 132-138 . 本站查看
    17. 陈锐,杜双杰,徐伟,竹涛. 南京城郊某典型退耕农用地土壤重金属含量特征与污染评价分析. 环境工程. 2022(03): 102-110+165 . 本站查看
    18. 朱迪,张朝晖,王智慧. 农田-泥炭藓系统重金属富集特征与生态风险评价. 环境科学. 2022(04): 2115-2123 . 百度学术
    19. 姜宇,郭庆军,邓义楠. 长江流域沉积物和土壤重金属分布规律研究进展. 生态学杂志. 2022(04): 804-812 . 百度学术
    20. 张瀚丹,刘新会,王宇静,段林帅,董璐. 土壤剖面重金属污染对微生物群落结构的影响. 环境科学与技术. 2022(04): 184-191 . 百度学术
    21. 王磊,周璐瑶,胡静博,蔡佳坊,王伟,肖万川,何妙妙. 再生水灌溉对稻田重金属分布的影响. 排灌机械工程学报. 2022(08): 842-849 . 百度学术
    22. 李延雪,张梦竹,舒莎莎,邹君晗,焦伟,周峻宇. 基于富集因子法与MLR-APCS模型应用的农田土壤重金属人为来源定量识别. 环境工程. 2022(09): 173-177+232 . 本站查看
    23. 赵家印,杨地,杨湘智,张宁,刘宇,王蒙蒙,吴云成,陈秋会,田伟. 云南省某煤矿开采遗址周边农用地土壤重金属污染评价及源解析研究. 生态与农村环境学报. 2022(11): 1473-1481 . 百度学术
    24. 陆音,肖昕,徐蕾,梁妍,栾慧君,塞古,李俊池,郭春滢. 煤矿开采裂缝对土壤中重金属分布的影响. 环境科技. 2022(06): 1-5+12 . 百度学术
    25. 孟婷婷,刘金宝,董浩,王博,张国剑. 城市绿地不同管理方式土壤重金属污染及生态风险评价. 环境工程. 2022(12): 217-223 . 本站查看
    26. 马晓慧,郝春明,王梦露,朱云燕. 峰峰煤矿塌陷区典型农田土壤剖面重金素元素化学风化规律. 科学技术与工程. 2021(03): 1202-1210 . 百度学术
    27. 浦江,张翠萍,刘淑娟,杨小燕,赵斌,李淑英,陆轶峰,王媛媛,周元清. 杞麓湖径流区不同湿地沉积物重金属污染特征及潜在生态风险评价. 农业资源与环境学报. 2021(05): 755-763 . 百度学术
    28. 王多兵,张猛,韩冬雅,陈锦,朱鹏鹏,肖立权. 湖南典型煤矿区地表水——土壤系统重金属污染特征、来源及风险. 应用化工. 2021(S2): 94-100+112 . 百度学术

    其他类型引用(20)

  • 加载中
计量
  • 文章访问数:  187
  • HTML全文浏览量:  28
  • PDF下载量:  15
  • 被引次数: 48
出版历程
  • 收稿日期:  2020-06-15
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回