EFFECTS OF PRETREATMENTS AND SUBSTRATE COMPOSITIONS ON ANAEROBIC DIGESTION OF ORGANIC WASTE
-
摘要: 针对我国推行垃圾分类政策后产生的大量有机垃圾难以有效消纳的问题,开展了厨余、果蔬与园林垃圾连续式厌氧发酵实验,并通过超声与碱热预处理技术改善产甲烷性能,并以厨余垃圾单独厌氧发酵作为对照实验组。根据进料有机负荷(OLR),将反应周期分为低有机负荷[OLR=1,2 g/(L·d)]和高有机负荷[OLR=4,6 g/(L·d)]2个阶段。结果表明:在低有机负荷阶段,反应体系均表现出较强的稳定性。其中,厨余垃圾实验组的有机质(VS)去除率和甲烷产率最高,分别可达到90.3%,460 mL/g。并且超声与碱热预处理可以使混合物料甲烷产率分别提高7%~8%和3%~7%;在高有机负荷阶段,厨余垃圾实验组稳定性明显降低,具体表现为pH值降低至6.70,挥发性脂肪酸(VFA)和氨氮(TAN)积累浓度分别达到1230,1519 mg/L,且VS去除率与甲烷产率分别降低了2.8%、11%。此时混合物料反应体系表现出较强的抗冲击负荷的能力。与厨余垃圾相比,混合物料的甲烷产率有所提高,可达到420 mL/g。其中,超声预处理后甲烷产率可进一步提高3%,而碱热预处理后甲烷产率降低了4%。Abstract: With the implementation of waste sorting policy in China, efficient utilization of organic waste becomes a great challenge in China. In this paper, continuous experiments on anaerobic digestions of kitchen waste, fruit and vegetable waste and garden waste were conducted, while ultrasound and alkali-thermal pretreatment were applied to enhance methane production, with the mono-digestion of food waste served as the control. According to different OLRs, the reaction period was divided into low OLR phase[OLR=1, 2 g/(L·d)] and high OLR phase[OLR=4, 6 g/(L·d)]. The results showed that under low OLR, all reaction systems showed strong stability, among which, kitchen waste had the highest VS removal rate of 90.3% and methane yield of 460 mL/g. Besides, after ultrasonic pretreatment and alkali-thermal pretreatment, the methane yields of co-substrates were increased by 7%~8% and 3%~7%, respectively. Under high organic load, the stability of mono-digestion system was significantly reduced, specifically, the pH value was decreased to 6.70 and the concentration of VFA and TAN was accumulated to 1230, 1519 mg/L, while the VS removal rate and methane yield were reduced by 2.8% and 11% as well. However, the co-digestion systems showed stronger resistance to high OLRs. Compared with kitchen waste, the methane yield of co-substrate was increased to 420 mL/g. After ultrasonic pretreatment, the methane yield was further increased by 3%, while the methane yield after alkali-thermal pretreatment was decreased by 4%.
-
Key words:
- kitchen waste /
- fruit and vegetable waste /
- garden waste /
- anaerobic co-digestion /
- pretreatment
-
[1] 国家发展改革委, 住房城乡建设部. 生活垃圾分类制度实施方案[R]. 北京:国务院办公厅, 2017. [2] 董玥, 梅凤乔. 基于干湿分类优化的城市生活垃圾收运处理系统研究[J]. 环境工程, 2017, 35(8):112-115,151. [3] GUO Q, DAI X H. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste:taking kitchen waste synergetic digestion project in Zhenjiang as an example[J]. Waste Management, 2017, 69:360-364. [4] SHEN F, YUAN H R, PANG Y Z, et al. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW):single-phase vs. two-phase[J]. Bioresource Technology, 2013, 144:80-85. [5] SHI Y, GE Y, CHANG J, et al. Garden waste biomass for renewable and sustainable energy production in China:potential, challenges and development[J]. Renewable & Sustainable Energy Reviews, 2013, 22:432-437. [6] BROWN D, LI Y B. Solid state anaerobic co-digestion of yard waste and food waste for biogas production[J]. Bioresource Technology, 2013, 127:275-280. [7] REN Y Y, YU M, WU C F, et al. A comprehensive review on food waste anaerobic digestion:research updates and tendencies[J]. Bioresource Technology, 2018, 247:1069-1076. [8] GARCIA-PEÑA E I, PARAMESWARAN P, KANG D W, et al. Anaerobic digestion and co-digestion processes of vegetable and fruit residues:process and microbial ecology[J]. Bioresource Technology, 2011, 102(20):9447-9455. [9] ZUO Z, WU S B, ZHANG W Q, et al. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste[J]. Bioresource Technology, 2013, 146:556-561. [10] YANG L C, XU F Q, GE X M, et al. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass[J]. Renewable & Sustainable Energy Reviews, 2015, 44:824-834. [11] ZHAO J, GE X M, VASCO-CORREA J, et al. Fungal pretreatment of unsterilized yard trimmings for enhanced methane production by solid-state anaerobic digestion[J]. Bioresource Technology, 2014, 158:248-252. [12] PAVI S, KRAMER L E, GOMES L P, et al. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste[J]. Bioresource Technology, 2017, 228:362-367. [13] 钱玉婷, 杜静, 陈广银, 等. 温和水热预处理促进秸秆产沼气的条件优化研究[J]. 中国环境科学, 2016, 36(12):3703-3710. [14] WANG L, SHEN F, YUAN H R, et al. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste:lab-scale and pilot-scale studies[J]. Waste Management, 2014, 34(12):2627-2633. [15] ZHANG Y, BANKS C J, HEAVEN S. Co-digestion of source segregated domestic food waste to improve process stability[J]. Bioresource Technology, 2012, 114:168-178. [16] GONZALEZ-FERNANDEZ C, SIALVE B, BERNET N, et al. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production[J]. Bioresource Technology, 2012, 110:610-616. [17] 徐一雯, 蒋建国, 刘诺, 等. 预处理对厨余垃圾等有机废弃物联合厌氧发酵的影响[J]. 清华大学学报(自然科学版), 2019, 59(7):558-566. [18] LI Y Y, JIN Y Y, BORRION A, et al. Effects of organic composition on mesophilic anaerobic digestion of food waste[J]. Bioresource Technology, 2017, 244:213-224. [19] MATAALVAREZ J, CECCHI F, LLABRES P, et al. Anaerobic-digestion of the Barcelona central food market organic wastes-plant-design and feasibility study[J]. Bioresource Technology, 1992, 42(1):33-42. [20] 李海红, 巴琦玥, 闫志英, 等. 不同原料厌氧发酵及其微生物种群的研究[J]. 中国环境科学, 2015, 35(5):1449-1457. [21] CESARO A, BELGIORNO V. Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste[J]. Ultrasonics Sonochemistry, 2013, 20(3):931-936. [22] LIU X, WANG W, GAO X B, et al. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste[J]. Waste Management, 2012, 32(2):249-255. [23] KWIATKOWSKA B, BENNETT J, AKUNNA J, et al. Stimulation of bioprocesses by ultrasound[J]. Biotechnology Advances, 2011, 29(6):768-780. [24] PAUDEL S R, BANJARA S P, CHOI O K, et al. Pretreatment of agricultural biomass for anaerobic digestion:current state and challenges[J]. Bioresource Technology, 2017, 245:1194-1205.
点击查看大图
计量
- 文章访问数: 124
- HTML全文浏览量: 13
- PDF下载量: 7
- 被引次数: 0